Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2
\(\left\{{}\begin{matrix}4x-3y=m-10\left(1\right)\\x+2y=3m+3\left(2\right)\end{matrix}\right.\)
Từ (1)=> x=\(\frac{m-10+3y}{4}\)thay vào (2) ta được:
\(\frac{m-10+3y}{4}\)+2y=3m+3 <=>m-10+3y+8y=12m+12<=>11y=11m+22<=>y=m+2 (3)
Thay (3) vào 2 được:
x+2m+4=3m+3<=>x=m-1(4)
thay vào x2+y2 ta được:
m2+4+m2-1=2m2+3
ta có 2m2 ≥ 0 với mọi m
2m2 +3 ≥ 3 với mọi m
Dấu "=" xảy ra <=> m=0
Vậy....
mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.
1.
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)
vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)
Thay vào đẳng thức ta được:
\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)
\(\Leftrightarrow\left\{\begin{matrix}\left(x-2y\right)^2=\left(3-m\right)^2\\\left(2x+y\right)^2=9\left(m+2\right)^2\end{matrix}\right.\)
Cộng lại:
5(x^2+y^2)=(3-m)^2+9(m+2)^2
=10m^2+30m+45
P=x^2+y^2=2m^2+6m+9
=>Pmin khi m=-3/2
b)
công lại=> (m+2)x=7
vói m=-2 vô nghiệm => đk m khác -2
x=7/(m+2)
thế vào 2
\(y=\frac{7}{m+2}-2=\frac{3-m}{m+2}\)
\(x+y=\frac{7}{m+2}+\frac{3-m}{m+2}=\frac{10-m}{m+2}\)
\(x+y=1\Leftrightarrow\frac{10-m}{m+2}=1\Rightarrow\frac{\left(10-m\right)-\left(m+2\right)}{m+2}=0\Rightarrow8-2m=0\Rightarrow m=4\)
a/ thay m=3 vào hệ ta có:
\(\left\{{}\begin{matrix}x+2y=12\\4x-3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+8y=48\\4x-3y=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}11y=55\\x+2y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=2\end{matrix}\right.\)
vậy..