\(\left\{{}\begin{matrix}\left(m-4\right)x+y=m\\3x-my=-1\end{matrix}\right.\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

18 tháng 3 2020

@Phạm Lan Hương

@Nguyễn Ngọc Lộc

18 tháng 3 2020

1) Thay $m=-1$ vào hệ phương trình, ta được:

Hỏi đáp Toán

31 tháng 3 2020

@Nguyễn Ngọc Lộc

@Phạm Lan Hương

NV
27 tháng 4 2020

Câu 3:

\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)

Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)

Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)

\(2x+y+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow26m-35=3m^2-12\)

\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)

Câu 4:

\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)

- Với \(m=-2\) hệ vô nghiệm

- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)

- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)

Câu 2:

Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)

11 tháng 4 2017

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

4 tháng 2 2021

 m=3m=3 hoặc m=1m=1.

 

9 tháng 2 2021

\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)

xét phương trình 2 ta được ; (m-2)(m+3)x=m+3

với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m

xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z

                                          =>x-1=2k

                                           =>x=2k+1

do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z

                         =>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn

 

20 tháng 1 2019

1.

a, \(\left\{{}\begin{matrix}2x-3y=3\\-4x=3x-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=3\\-4x-3x=13\end{matrix}\right.\)\(\left\{{}\begin{matrix}-4x+6y=-6\\-4x-3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9y=-19\\-4x+6y=-6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{19}{9}\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=9\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=2\\\dfrac{3}{x}+\dfrac{3}{y}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(TM\right)\\y=\dfrac{1}{2}\left(TM\right)\end{matrix}\right.\)

c, \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{x}=16\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{16}\left(TM\right)\\y=\dfrac{13}{7}\left(TM\right)\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\left(x\ge-1,y\ge1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+1}-6\sqrt{y-1}=-8\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{y-1}=-10\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-1}=2\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\y=5\left(TM\right)\end{matrix}\right.\)

26 tháng 4 2019

Câu a sai rồi : \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)mới đúng