\(\left\{{}\begin{matrix}mx-y=7\\2x-y=-4\end{matrix}\right.\). Gọ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

bấm vào tìm câu hỏi tương tự đi

\(\Leftrightarrow\left\{{}\begin{matrix}mx-2x=7+4=11\\2x-y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m-2\right)=11\\y=2x+4\end{matrix}\right.\)

Nếu m=2 thì hệ vônghiệm

Nếu m<>2 thì hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\dfrac{11}{m-2}\\y=\dfrac{22}{m-2}+4=\dfrac{22+4m-8}{m-2}=\dfrac{4m-14}{m-2}\end{matrix}\right.\)

\(P=x^2+y^2\)

\(=\dfrac{121}{\left(m-2\right)^2}+\dfrac{\left(4m-14\right)^2}{\left(m-2\right)^2}\)

\(=\dfrac{16m^2-112m+196+121}{\left(m-2\right)^2}\)

\(=\dfrac{16m^2-112m+317}{m^2-4m+4}\)

Để P min thì 11/m-2=4m-14/m-2

=>4m-14=11

=>4m=25

=>m=25/4

5 tháng 2 2018

ta có : \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\2x-7+mx=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\x=\dfrac{11-mx}{2}\end{matrix}\right.\)

\(\Rightarrow P=x^2+y^2=\dfrac{\left(11-mx\right)^2}{4}+\left(7-mx\right)^2\)

\(=\dfrac{121-22mx+m^2x^2}{4}+49-14mx+m^2x^2\)

\(=\dfrac{5m^2x^2-78mx+317}{4}\)

\(=\dfrac{5m^2x^2-2.\sqrt{5}mx+\dfrac{78}{2\sqrt{5}}+\dfrac{1521}{5}+\dfrac{64}{5}}{4}\)

\(=\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\)

ta có : \(P\) nhỏ nhất khi \(\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\) nhỏ nhất

\(\Leftrightarrow\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\) nhỏ nhất

ta có : \(\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}\forall mx\)

khi \(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}=0\Leftrightarrow m=\dfrac{39}{5x}\)

khi đó ta có : \(P=\dfrac{\dfrac{64}{5}}{4}=\dfrac{16}{5}\)

vậy .............................................................................................

12 tháng 2 2022

a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)

Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)

\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)

Dấu''='' xảy ra khi m =2 

Vậy ...

27 tháng 1 2020

\(\left\{{}\begin{matrix}mx+y=7\\2x-y=-4\end{matrix}\right.\left(1\right)\)

Ta có: \(2x-y=-4\)

\(\Rightarrow y=2x+4\)

\(P=x^2+y^2=x^2+\left(2x+4\right)^2=x^2+4x^2+16x+16\)

\(P=5x^2+16x+16=5\left(x^2+2.\frac{8}{5}x+\frac{64}{25}\right)+\frac{16}{5}\)

\(P=5\left(x+\frac{8}{5}\right)^2+\frac{16}{5}\)

Do: \(\left(x+\frac{8}{5}\right)^2\ge0\Rightarrow5\left(x+\frac{8}{5}\right)^2+\frac{16}{5}\ge\frac{16}{5}\)

\(P_{Min}=\frac{16}{5}\Leftrightarrow x=-\frac{8}{5}\) Mà: \(y=2x+4\Rightarrow y=\frac{4}{5}\)

Thay \(x,y\) vào phương trình đề cho ta được:

\(m\left(-\frac{8}{5}\right)+\frac{4}{5}=7\)

\(\Leftrightarrow m=-\frac{31}{8}\)

Vậy nếu \(m=-\frac{31}{8}\) thì \(P\) đạt \(Min=\frac{16}{5}\)