Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=\frac{m+1}{m}\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m-1\right)y=2-\frac{m+1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)y=\frac{m-1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}}\)
bình thường dùng pp thế nhưng chắc bài này cộng là nhanh nhất rồi ( ͡° ͜ʖ ͡°)
với m=1 thì y vô số nghiệm => x vô số nghiệm thỏa mãn pt dưới
Với \(m\ne1\Rightarrow y=\frac{1}{m}\Rightarrow x=\frac{m+1}{m}-\frac{2}{m}=\frac{m-1}{m}\)
b/ \(A\left(\frac{m-1}{m};\frac{1}{m}\right)\)
I/Vì x=1-y nên A luôn nằm trên đồ thị hàm số x=1-y
II/ Để A thuộc góc phân tư thứ nhất thì x>0, y>0, \(\Leftrightarrow\hept{\begin{cases}1-\frac{1}{m}>0\\\frac{1}{m}>0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{m}< 1\\m>0\end{cases}\Leftrightarrow}m>1}\)
Vậy với m>1 thì A thuộc góc phần tư thứ nhất
III/ Cái này thì bạn tự vẽ hình, kẻ đường cao xuống rồi dùng hệ thức lượng liên hệ giữa đường cao và cạnh góc vuông tính
Mọi việc quy về giải hệ.
Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).
Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)
Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).
Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).
Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).
-----
Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).
Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).
Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.
\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))
\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)
Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)
\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)
Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)
Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)