\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=\frac{m+1}{m}\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m-1\right)y=2-\frac{m+1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)y=\frac{m-1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}}\)

bình thường dùng pp thế nhưng chắc bài này cộng là nhanh nhất rồi ( ͡° ͜ʖ ͡°) 

với m=1 thì y vô số nghiệm => x vô số nghiệm thỏa mãn pt dưới

Với \(m\ne1\Rightarrow y=\frac{1}{m}\Rightarrow x=\frac{m+1}{m}-\frac{2}{m}=\frac{m-1}{m}\)

b/ \(A\left(\frac{m-1}{m};\frac{1}{m}\right)\)

I/Vì x=1-y nên A luôn nằm trên đồ thị hàm số x=1-y

II/ Để A thuộc góc phân tư thứ nhất thì x>0, y>0, \(\Leftrightarrow\hept{\begin{cases}1-\frac{1}{m}>0\\\frac{1}{m}>0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{m}< 1\\m>0\end{cases}\Leftrightarrow}m>1}\)

Vậy với m>1 thì A thuộc góc phần tư thứ nhất

III/ Cái này thì bạn tự vẽ hình, kẻ đường cao xuống rồi dùng hệ thức lượng liên hệ giữa đường cao và cạnh góc vuông tính  

2 tháng 2 2017

Chưa hok

22 tháng 1 2017

Mọi việc quy về giải hệ.

Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).

Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)

Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).

Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).

Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).

-----

Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).

Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).

Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.

28 tháng 3 2020

m khác 0 

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
20 tháng 4 2020

ax8=18

2 tháng 3 2020

\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))

\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)

Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)

\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)

Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)

Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)