K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Điều kiện xyz ≠ 0. Nhận thấy nếu một trong ba số x, y, z có một số âm, chẳng hạn x < 0 thì phương trình thứ 3 vô nghiệm. Nếu hai trong số ba số x, y, z là số âm chẳng hạn x, y < 0 thì phương trình thứ 2 vô nghiệm. Vậy ba số x, y, z cùng dấu

Ta có  1 x y = x z + 1 1 y z = y z + 1 1 z x = z x + 1

⇔ 1 x y z = x z 2 + 1 z 1 x y z = y x 2 + 1 x 1 x y z = z y 2 + 1 y ⇔ 1 x y z = x + z z 2 1 x y z = y + x x 2 1 x y z = z + y y 2

* Trường hợp 1: x, y, z > 0

Nếu x ≥ y chia hai vế của phương trình thứ hai cho hai vế của phương trình thứ ba của hệ ta được  x 2 y 2 = x + y y + z ⇒ x ≥ z

Với x z chia hai vế phương trình chứ nhất cho phương trình thứ hai: z 2 x 2 = x + z y + x ⇒ z ≤ y

Với z ≤ y chia phương trình thứ nhất cho phương trình thứ ba: z 2 y 2 = x + z y + z ⇒ x ≤ y

Suy ra x = y = z thay vào hệ đã cho ta tìm được  1 x 2 = 2 ⇒ x = 1 2 (x > 0) suy ra nghiệm  x = y = z =  1 2

* Trường hợp 2: x, y, z < 0 ta làm tương tự tìm được thêm nghiệm x = y = z =  − 2 2

Vậy hệ phương trình có 2 nghiệm

Đáp án:C

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

30 tháng 3 2019

\(\hept{\begin{cases}\frac{1}{z}=2-\frac{1}{x}-\frac{1}{y}\left(1\right)\\\frac{2}{xy}-\left(2-\frac{1}{x}-\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(\frac{1}{y^2}-\frac{4}{y}+4\right)+\left(\frac{1}{x^2}-\frac{4}{x}+4\right)=0\)

\(\Leftrightarrow\left(\frac{1}{y}-2\right)^2+\left(\frac{1}{x}-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow x+y+z=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}=\frac{1}{2}\)

24 tháng 2 2018

help me

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

9 tháng 1 2021

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).