Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)
Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)
Do \(-8\le x\le-2\Rightarrow x-3< 0\)
Do đó BPT tương đương:
\(m\le\dfrac{1}{x-3}\) (1)
(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)
\(\Rightarrow m>-\dfrac{1}{5}\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
\(\begin{cases}x^2+7x-8\le0\\a^2x+1>3+\left(3a-2\right)x\end{cases}\) (1)
\(\Leftrightarrow\) \(\begin{cases}x^2+7x-8\le0\\\left(a^2-3a+2\right)x>2\end{cases}\)
ta đặt
\(x^2+7x-8\le0\) (a)
\(\left(a^2-3a+2\right)x>2\) (b)
(1) Vô nghiệm khi và chỉ khi T(a)\(\cap\)T(b) = \(\varnothing\)
Dễ thấy T(a) = \(\left[-8;1\right]\). Đặt m:=\(a^2-3a+2\), xét các trường hợp sau :
- Nếu a=1 hoặc a=2 thì
\(\left(a^2-3a+2\right)x>2\) \(\Leftrightarrow\) 0.x > 2 \(\Rightarrow\) T ( b) = \(\varnothing\) nên (1) vô nghiệm
- Nếu \(a\in\left(-\infty;1\right)\cup\left(2;+\infty\right):=\)(*) thì m >0 nên T(b) có nghiệm \(x>\frac{2}{m}\) Ta có :
T(a)\(\cap\) T(b) = \(\varnothing\) \(\Leftrightarrow\) \(\frac{2}{m}\ge1\)
\(\Leftrightarrow\) \(2\ge m=a^2-3a+2\) ( do m>0 trong (*)
\(\Leftrightarrow\) \(a^2-3a\le0\) \(\Leftrightarrow\) \(0\le a\le3\)
Kết hợp với điều kiện \(a\in\)(*) được \(0\le a<1\) hoặc 2<a\(\le\)3
- Nếu \(a\in\)(1;2) thì m<0 nên T(b) có nghiệm \(x<\frac{2}{m}\) Ta có T(a)\(\cap\) T(b) = \(\varnothing\) \(\Leftrightarrow\) \(\frac{2}{m}\le-8\)
\(\Leftrightarrow\) \(2\ge-8m=-8\left(a^2-3a+2\right)\) (do m<0 trong (1;2)
\(\Leftrightarrow\) \(4a^2-12a+9\ge0\) \(\Leftrightarrow\) \(\left(2a-3\right)^2\ge0\) luôn đúng
Vậy với \(a\in\)(1;2) thì (1) vô nghiệm. Tóm lại ta được 0\(\le a\le\)3 là các giá trị cần tìm
b) Bất phương trình đầu của hệ có nghiệm là $x>1$
Xét bất phương trình thứ hai của hệ. Ta có: \(\Delta'=m^2-1\)
\(\circledast\Delta'=0\Leftrightarrow m=\pm1\)
- Với $m=1$, nghiệm của bất phương trình là $m=1$. Do đó, hệ vô nghiệm
- Với $m=-1$, nghiệm của bất phương trình là $m=-1$. Do đó, hệ vô nghiệm
\(\circledast\)Nếu \(\Delta'< 0\) hay $-1<m<1$ thì bất phương trình này vô nghiệm. Do đó, hệ vô nghiệm
\(\circledast\)Nếu \(\Delta'>0\) hay $m<-1$ hoặc $m>1$ thì tam thức ở vế trái của bất phương trình này có hai nghiệm phân biệt \(x_1,x_2\). Nghiệm của bất phương trình này là:
\(x_1\le x\le x_2\left(x_1< x_2\right)\)
Theo định lí Vi-ét, ta có \(x_1x_2=1,x_1+x_2=2m\)
- Nếu $m<-1$ thì cả hai nghiệm \(x_1,x_2\) đều âm. Do đó, hệ vô nghiệm
- Nếu $m>1$ thì hai nghiệm \(x_1,x_2\) đều dương. Ngoài ra, vì \(x_1x_2=1\) và \(x_1\ne x_2\) nên \(x_1< 1< x_2\). Do đó, hệ có nghiệm
Vậy hệ bất phương trình đã cho có nghiệm khi và chỉ khi \(m>1\)
a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.
pt (1) có nghiệm\(-8< x< 1\)
pt (2) có nghiệm\(x>\dfrac{2}{a^2-3a+2}\) nếu a<1 hay a>2
\(x< \dfrac{2}{a^2-3a+2}\) nếu 1<a <2
pt \(\left(2\right)\)vô nghiệm nếu a=1 hay a=2
Để hệ bpt vô nghiệm:
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}\le-8\\\dfrac{2}{a^2-3a+2}\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}+8\le0\\\dfrac{2}{a^2-3a+2}-1\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2\left(2a-3\right)^2}{a^2-3a+2}\le0\\\dfrac{-a^2+3a}{a^2-3a+2}\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1< a< 2\\0\le a< 1< 2< a\le3\end{matrix}\right.\)
Xét \(x^2+7x-8\le0\Leftrightarrow-8\le x\le1\) hay \(D_1=\left[-8;1\right]\)
Xét \(f\left(x\right)=ax^2-\left(3a-2\right)x-2>0\) (1)
- Với \(a=0\Leftrightarrow x>1\) hệ vô nghiệm (thỏa mãn)
- Với \(a\ne0\) , \(\Delta=\left(3a-2\right)^2+8a=9a^2-4a+4=9\left(a-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)
Gọi 2 nghiệm của pt (1) là \(x_1;x_2\)
TH1: \(\left\{{}\begin{matrix}a>0\\x_1\le-8< 1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a.f\left(-8\right)\le0\\a.f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\left(88a-18\right)\le0\\a\left(a-3a+2-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0< a\le\dfrac{9}{44}\)
TH2: \(\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}x_1< x_2\le-8\\1\le x_1< x_2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}\left\{{}\begin{matrix}a.f\left(-8\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}< -8\end{matrix}\right.\\\left\{{}\begin{matrix}a.f\left(1\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}>1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Tự giải nốt nhé, nhìn mà thấy làm biếng luôn :D