Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 chiều là x, y
=>
x + y = 14
x^2 + y^2 = 100
<=>
x = 14 - y
(14-y)2+y2 = 100
<=>
x = 14 - y
196 - 28y + y2 + y2 = 100
<=>
x = 14 - y
2y2 - 28y + 96 = 0
<=>
x = 14 - y
y = 6 hoặc y = 8
<=>
x = 8, y = 6
hoặc x = 6, y = 8
=> chiều dài: 8m, chiều rộng: 6m
gọi chiều dài. chiều rộng hcn lần lượt là a,b(a>b>0)
ta có(a+b).2=28
<=> a+b=14
=> a=14-b
lại có a^2+b^2=10^2
<=>(14-b)^2+b^2=100
<=>196-28b+2b^2=100
<=>[b=8=> a=6(loại)
[b=6=>a=8
Vậy chiều dài: 8 m
chiều rộng: 6 m
Gọi chiều rộng là x
Chiều dài là 17-x
Theo đề, ta có phương trình:
\(\left(22-x\right)\cdot\left(x-1\right)=x\left(17-x\right)+8\)
\(\Leftrightarrow22x-22-x^2+x=17x-x^2+8\)
\(\Leftrightarrow23x-17x=8+22=30\)
hay x=5
Vậy: Độ dài đường chéo là 13m
a) Diện tích hình chữ nhật ABCD là:
SABCD = 12.16= 192 ( cm2)
b) Áp dụng định lý Py-ta-go trong tam giác ADC vuông tại A :
AD2 + DC2 = AC2
122 + 162 = AC2
400 = AC2
=> AC = 20 (cm)
HCN ABCD có O là giao điểm hai đường chéo AC và BD nên O là trung điểm của AC và BD.
Xét tam giác ADC vuông tại D có O là trung điểm AC
=> DO = 1/2 AC = 1/2 . 20 = 10 ( cm )
Tam giác ADC vuông tại D có O là trung điểm AC
M là trung điểm AD
=> MO là đường trung bình của tam giác ADC
=> MO = 1/2 DC
=> MO = 1/2 . 16 = 8 ( cm)
Nửa chu vi hình chữ nhật là:
\(34:2=17\left(m\right)\)
Chiều rộng hình chữ nhật là:
\(17-12=5\left(cm\right)\)
Áp dụng định lý Pitago:
\(BD=\sqrt{17^2+5^2}=\sqrt{314}\left(cm\right)\)