Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).
Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.
MH=NI( dt ANC=AMC và chung đáy AC).
S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).
S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB)
suy ra S(FMC)=1/3S(NBC)=1/3× 150
=50.S(AFM)
=S(ABC)-S(FMC)-S(ABM)
=300-50-150=100
S(BMN)=1/4S(ABN)
Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.
Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).
S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
Giả sử điểm M nằm trên điểm D (tức là điểm M chính là điểm D):
Ta thấy: độ dài đáy của hình tam giác MNI bằng 1/3 độ dài đáy của hình tam giác AIM nhưng chiều cao vẵn bằng nhau.
Diện tích hình tam giác AIM là:
15 : 1/3 = 45 (cm2)
Ta thấy: độ dài đáy của hình tam giác AIM bằng chiều rộng của hình chữ nhật ABCD; chiều cao của hình tam giác AIM bằng 1/2 chiều dài của hình chữ nhật ABCD. Mà diện tích hình tam giác phải chia cho 2 nên diện tích hình tam giác AIM bằng 1/4 diện tích hình chữ nhật ABCD.
Diện tích hình chữ nhật ABCD là:
45 : 1/4 = 180 (cm2)
Đáp số: 180 cm2
Nối AM. Xét hai tam giác MNI và tam giác MAI có chung đường cao hạ từ M xuống AI
S(MNI)/S(MAI)=NI/AI=1/3 => S(MAI)=3xS(MNI)=45 cm2
Xét hai tam giác MAI và tam giác BAI có chung đường cao từ A xuống BM
S(MAI)/S(BAI)=MI/BI=1 => S(BAI)=45 cm2
=>S(AMB)=S(MAI)+S(BAI)=45+45=90cm2 =1/2xABxAD
Ta có
S=S(ADM)+S(BCM)=(ADxDM/2)+(BCxCM/2)=1/2xADx(DM+CM) (Vì AD=BC)
S=1/2xADxCD
Do AB=CD nên S(AMB)=S=90 cm2
S(ABCD)=S(AMB)+S=90+90=180 cm2
Ta có:
*S ABCD = S ABC + S ACD
Hay
S ABCD = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + S 7 + S 8
*Vì MB = MC nên:
S1 + S2 = S ABC : 2 ( Tam giác ABM và ABC có chung đường cao hạ từ A và BM = BC : 2 )
*Tương tự: S 7 + S 8 = S ACD : 2 ( Tam giác CED và ACD có chung đường cao hạ từ C và DE = AD : 2 )
*Do đó:
S 1 + S 2 + S 7 + S 8 = S 3 + S 4 + S 5 + S 6 = S ABCD : 2
*Lại có:
S 2 + S 3 = S 5 + S 6 (Hai tam giác BME và CME có chung đường cao hạ từ E và BM = CM)
S 5 + S 8 = S 3 + S 4 (Hai tam giác AME và DME có chung đường cao hạ từ M và ED = EA)
==>S 2 + S 8 = S 4 + S 6
*Vì S 1 + S 7 + (S 2 + S 8) = S 3 + S 5 + (S 4 + S 6) mà S 2 + S 8 = S 4 + S 6
Nên S 1 + S 7 = S 3 + S 5
==>S 3 + S 5 = 3 cm2 + 5 cm2 = 8 cm2
Hay SEHKMN = 8 cm2
Đáp số : 8 cm2