Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
Bài làm
Ta có: MA = MD ( hai tia đối nhau )
MC = MB ( hai tia đối nhau )
=> MA + MC = MD + MB
=> MA2+MC2=MD2+MB2 ( đpcm )
Vậy MA2+MC2=MD2+MB2
# Chúc bạn học tốt #
Gọi K là giao điểm 2 đường chéo AC và BD => K là trung điểm AC và BD (tính chất HCN)
Trong tam giác MAC: MA^2 + MC^2 = 2*MK^2 + (1/2)*AC^2 (1) (công thức trung tuyến)
Trong tam giác MBD: MB^2 + MD^2 = 2MK^2 + (1/2)*BD^2 (2) (công thức trung tuyến)
Mặt khác AC = BD (đường chéo HCN) (3)
Từ (1), (2), (3) => MA^2 + MC^2 = MB^2 + MD^2 (đpcm)
Bạn tự vẽ hình nhé
a, Xét tam giác AOC và tam giác BOC có;
OA=OB ( giả thiết )
góc AOC = góc BOC ( giả thiết )
OC cạnh chung
=> tam giác AOC = tam giác BOC ( C . G .C )
=> AC = BC ( 2 cạnh tương ứng )
Do đó tam giác ACB cân tại C
b, Xét tam giác AOD và tam giác BOD có ;
OA = OB ( giả thiết )
Góc AOc = góc BOC ( giả thiết )
OD cạnh chung
=> tam giác AOD = tam giác BOD ( c.g.c )
=> góc ADO = góc BDO ( 2 góc tương ứng )
Ta có ; góc ADO + góc BDO = 180 độ ( 2 góc kề bù )
=> góc ADO = góc BDO = 180 độ : 2
=> Góc ADO = góc BDO = 90 độ