Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCBD có
CA vừa là trung tuyến, vừa là đường cao
=>ΔCDB cân tại C
b: Xét ΔMDE và ΔMCB có
góc DME=góc CMB
MD=MC
góc MDE=góc MCB
=>ΔMDE=ΔMCB
=>ME=MB và CB=DE
BC+BD=ED+BD>BE
A B C D E F
a, Áp dụng định lí Pytago cho ∆ABC ta có:
AB2 + AC2 = BC2
=> AB2 + 82 = 102
=> AB2 = 100 - 64 = 36
=> AB = 6 cm
Vì AB = AD mà A nằm giữa B và D (cách vẽ) => BD = 2AB = 12cm
b, Xét ∆ABC và ∆ADC, ta có:
- AB = AD (gt)
- góc DAC = góc BAC = 90o
- CA là cạnh chung (gt)
=> ∆ABC = ∆ADC (c-g-c)
c, Xét ∆ECD và ∆EBF, ta có:
- góc FBE = góc DCE [so le trong]
- EB = EC (E là trung điểm BC)
- góc CED = góc BEF (đối đỉnh)
=> ∆ECD = ∆EBF (g-c-g)
=> DE = EF
d,
Vì ∆ECD = ∆EBF => CD = BF
Mà DB + BF > DF (bất đẳng thức tam giác)
\(\Rightarrow\frac{DB+BF}{2}>\frac{DF}{2}=DE\)
\(\Leftrightarrow\frac{DB+DC}{2}>DE\)