K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

a/ Từ M dựng đường thẳng // AB cắt AD tại H ta có

\(AB\perp AD;\)MH//AB \(\Rightarrow MH\perp AD\)

Mà BC//AD

=> ABMH là hình bình hành => AB=MH

\(\Rightarrow S_{AMD}=\frac{AD.MH}{2}=\frac{AD.AB}{2}=\frac{S_{ABCD}}{2}\left(dpcm\right)\)

b/

\(\frac{S_{ABM}}{S_{DCM}}=\frac{\frac{1}{2}.BM.AB}{\frac{1}{2}.CM.CD}=\frac{BM}{CM}=\frac{1}{3}\) (do ABCD là HCN nên AB=CD)

29 tháng 11 2018

Kẻ \(NI\perp MC\left(I\in DC\right)\)

Ta có AB // CD và NI, BC lần lượt là khoảng cách giữa 2 đường thẳng AB và CD

\(\Rightarrow NI=BC=3cm\)

M là trung điểm của DC (gt) nên \(MC=\frac{1}{2}DC=\frac{1}{2}AB=\frac{1}{2}.4=2\left(cm\right)\)

\(S_{CNM}=\frac{NI.MC}{2}=\frac{3.2}{2}=3\left(cm^2\right)\)

2 tháng 1 2020

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

GV
29 tháng 4 2017

A B C D M N T h

a) dt(ABMD) = dt(ABCD) - dt(CMD)

Mà dt(CMD) = 1/2 MC.h = 1/2 . 2/3 . BC .h = 1/3 dt(ABCD) = 1/3.S

(với h là đường cao hạ từ A xuống BC của hình bình hành ABCD)

Suy ra dt(ABMD) = S - 1/3 S = 2/3. S

b) dt(ABNT) = BN.h = 2/3 BC . h = 2/3 . S