Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD
MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)
b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN
Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)
CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
A B C D H N M
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB và AC
nên MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN//BE và MN=BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN(2)
Từ (1)và (2) suy ra AH là đường trung trực của MN
Xét ΔABC có
E,M lần lượt là trung điểm của CB và BA
nên ME là đường trung bình
=>ME=CA/2=NH
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
bạn tự phác hình ra nhé
a) Xét tứ giác AHCK có AH _|_ BD và CK _|_ BD => AH // CK
xét tam giác AHD và tam giác CKB có:
\(\widehat{H}=\widehat{K}=90^o\)
AD=BC
\(\widehat{ADH}=\widehat{CBK}\)
\(\Rightarrow\Delta AHD=\Delta CKB\)(cạnh huyền-góc nhọn)
=> AH=CK
vậy tứ giác AHCK là hình bình hành
b) xét hình bình hàng AHCK, trung điểm O của đường chéo HK cũng là trung điểm của đường chéo AC (tính chất đường chéo của hình bình hành) do đó 3 điểm A,O,C thẳng hàng (đpcm)
a) Xét ΔAHD và ΔCKB có:
AD = BC (gt)
góc ADB = góc DBC ( SLT).
=> ΔAHD = ΔCKB (cạnh huyền- góc nhọn)
=> BH = CK( hai cạnh tương ứng)
Lấy M trung điểm BD
=> MD = MB
=> MD - DH = MB - BK
=> MH = MK (vì M Trung điểm HK)
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hoặc M là Trung điểm AC và M trung điểm HK.
=> Tứ giác AKCH là hình bình hành (đpcm)
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=BC
\(\widehat{HDA}=\widehat{KBC}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành