Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=12\cdot5=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: Xét ΔBCD có CE là phân giác
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)
Xét ΔHAB vuông tại H và ΔADB vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHAB~ΔADB
=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)
=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)
=>\(EB\cdot HB=HA\cdot ED\)
a) Do ABCD là HCN ( gt)
⇒ AD = BC = 6cm
⇒ SADB = \(\dfrac{1}{2}.AB.AD=\dfrac{1}{2}.8.6=24\left(cm^2\right)\)
b) Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại A có :
DB2 = AB2 + AD2
DB = \(\sqrt{8^2+6^2}\)
DB = 10 ( DB > 0)
Ta có : SABD = \(\dfrac{AH.BD}{2}\)
⇒ \(\dfrac{AH.BD}{2}\) = 24
⇒ AH = \(\dfrac{48}{DB}=\dfrac{48}{10}=4,8\left(cm\right)\)
c) Xét tam giác AHB và tam giác BCD có :
Góc AHB = Góc BCD ( = 90o)
Góc ABH = Góc BDC ( SLT )
⇒ Tam giác AHB ~ Tam giác BCD ( TH3)
d) Xét tam giác ADH và Tam giác BDA có :
Góc AHD = Góc BAD ( = 90o)
Góc BDA chung
⇒ Tam giác ADH ~ Tam giác BDA ( TH3 )
⇒ \(\dfrac{AD}{DB}=\dfrac{DH}{AD}\)
⇒ AD2 = DB.DH
a. Xét tam giác AHB và tam giác BCD, có:
\(\widehat{AHB}=\widehat{BCD}=90^0\)
\(\widehat{ABH}=\widehat{CDB}\) ( cùng phụ với \(\widehat{B}\) )
Vậy tam giác AHB đồng dạng tam giác BCD ( g.g )
b.Xét tam giác AHD và tam giác ABD, có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{D}:chung\)
Vậy tam giác AHD đồng dạng tam giác ABD ( g.g )
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\)
\(\Leftrightarrow AD^2=BD.DH\)
c. Áp dụng định lý pitago vào tam giác vuông ABD, có:
\(BD^2=AD^2+AB^2\)
\(\Rightarrow BD=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)
Ta có:\(AD^2=BD.DH\) ( cmt )
\(\Leftrightarrow3^2=5DH\)
\(\Leftrightarrow9=5DH\)
\(\Rightarrow DH=1,8cm\)
Áp dụng dịnh lý pitago vào tam giác vuông AHD, có:
\(AD^2=AH^2+DH^2\)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{3^2-1,8^2}=\sqrt{5,76}=2,4cm\)
a, Xét tam giác AHB và tam giác BCD có
^AHB = ^BCD = 900
^ABH = ^BDC ( soletrong )
Vậy tam giác AHB ~ tam giác BCD (g.g)
b, Xét tam giác AHD và yam giác BAD có
^AHD = ^BAD = 900
^D _ chung
Vậy tam giác AHD ~ tam giác BAD (g.g)
\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\Rightarrow AD^2=HD.BD\)
c, Theo định lí Pytago tam giác DAB vuông tại A
\(BD=\sqrt{AB^2+AD^2}=5cm\)
Lại có \(\dfrac{AH}{AB}=\dfrac{AD}{BD}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}cm\)
\(HD=\dfrac{AD^2}{BD}=\dfrac{9}{5}cm\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BE/EC=BC/CD=3/4
a) Ta có :
AD = BC = 6 cm
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :
1/AD^2 + 1/AB^2 = 1/AH^2
<=> 1/6^2 + 1/8^2 = 1/AH^2
<=> AH = 4,8(cm)
b)
Áp dụng Pitago trong tam giác BCD vuông tại C có :
BC^2 + CD^2 = BD^2
<=> 6^2 + 8^2 = DB^2
<=> BD = 10(cm)
Xét hai tam giác vuông AHB và BCD có :
AH/BC = 4,8/6 = 4/5
AB/BD = 8/10 = 4/5
Do đó tam giác AHB đồng dạng với tam giác BCD
a) Xét tam giác ABD vuông tại A theo định lý pitago ta có
BD2=AB2+AD2
Thay AB= 6cm AD=BC=8cm ta được
BD2=62+86
BD=10 cm
Vậy BD=10cm
b) Xét tam giác ADH và tam giác BDA có
AHD =BAD=90 độ
D chung
do đó tg ADH ~ tg BDA
c) tg ADH ~ tg BDA (gg)
=> AD/BD = DH/DA hay AD2=DH.BD
d) Ta có AB//DC (ABCD là hcn)
=>góc ABD=góc CDB hay góc ABH = góc CDB
Xét tam giác AHB và Tam giác BCD có
C= BHA =90 độ
góc ABH = góc CDB(cmt)
do đó tg ABH ~ tg CDB (gg)
Cho tam giác ABC , các đường cao BD,CE cắt nhau tại H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K . Gọi M là trung điểm của BC
a) Chứng minh tam giác ADB~tam giác AEC
b) Chứng minh HE.HC=HD.HB
c) Chứng minh H,K,M thẳng hàng
Tam giác ABC phải co điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
Hình bạn tự vẽ nha
xét hcn ABCD có AB//CD
=>\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)
=>\(\widehat{ABD}=\widehat{BDC}\)(2 góc ở vị trí so le trong)
=>\(\widehat{ABH}=\widehat{BDC} \) (H∈BD)
xét △AHB và △ BCD
có \(\widehat{C}=\widehat{AHB}=90\)
\(\widehat{ABH}=\widehat{BDC} \)(cmt)
=>△AHB ∼ △ BCD (g-g)
b) xét △AHD và △BAD có
\(\widehat{D} chung \)
\(\widehat{A}=\widehat{H}=90\)
△AHD ∼ △BAD (gg)
=>\(\dfrac{AD}{BD}=\dfrac{HD}{AD}(tsđd)\)
=>AD2=BD.HD
giải giúp mih câu c của bài đó;
c. tia phân giác của góc adb cắt ab lần lượt tại m và k chứng minh akbình =bh . hm