Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhé
a, chứng minh theo trường hợp (g-g)
b, vì\(\Delta\)HDA \(\sim\)\(\Delta\)ADB\(\Rightarrow\)\(\dfrac{DA}{HD}=\dfrac{DB}{DA}\)\(\Rightarrow\)\(AD^2=DB.HD\)
c, vì \(\Delta HDA\sim\Delta ADB\)\(\Rightarrow\dfrac{DH}{AD}=\dfrac{DA}{DB}\)
\(mà\dfrac{DA}{DB}=\dfrac{AK}{KB}\)(vì AK là tia phân giác của goc ADB)
\(\Rightarrow\)\(\dfrac{DH}{AD}=\dfrac{AK}{KB}\)mà \(\dfrac{DH}{AD}=\dfrac{MH}{AM}\)\(\Rightarrow\)\(\dfrac{MH}{AM}=\dfrac{AK}{KB}\)\(\Rightarrow\)AM.AK=MH.KB
d
A B C D H O P M K E F I Q
d) +)CM EF // DB
Gọi I là giao điểm của EF và AP
Vì tứ giác ABCD là hình chữ nhật và O là giao điểm của AC và BD nên AO = OB
Suy ra \(\Delta AOB\) cân tại O
=> \(\widehat{OAB}=\widehat{OBA}\) (1)
Vì tứ giác AEPF là hình chữ nhật và I là giao điểm của AP và EF nên AI = IE
Suy ra \(\Delta AIE\) cân tại O
\(\Rightarrow\widehat{OAE}=\widehat{AEI}\) (2)
Từ (1) và (2) suy ra \(\widehat{OBA}=\widehat{AEI}\) mà 2 góc này nằm ở vị trí đồng vị nên EF // BD
+) CM A, Q ,O thẳng hàng
Vì FE // DB \(\Rightarrow\Delta EQF\sim\Delta DQB\Rightarrow\frac{EF}{BD}=\frac{EQ}{QD}\Rightarrow \frac{2EI}{2DO}=\frac{EQ}{QD}\)
Xét \(\Delta EQI \) và \(\Delta DQO\) có :
\(\widehat{FED}=\widehat{EDB}\)
\(\frac{EI}{DO}=\frac{EQ}{QD}\)
\(\Rightarrow\Delta EQI\sim\Delta DQO\)
\(\Rightarrow\widehat{EQI}=\widehat{DQO}\)
mà \(\widehat{IQE}+\widehat{IQD}=180^o\)
\(\Rightarrow\widehat{DQO}+\widehat{IQD}=180^ohayI,Q,O\) thẳng hàng hay A, Q, O thẳng hàng
xét tam giác ABC:
EP//BC (cùng // AD)
=> AP/AC=AE/AB (talet) (1)
xét tam giác ADC:
PF//DC (cùng //AB)
=> AF/AD=AP/AC (talet) (1)
từ (1) (2) => AE/AB=AF/AD
xét tam giác ABD có:
AF/AD=AE/AB (cmt)
=> EF//BD (talet đảo)
xét tam giác QFE và QBD:
EQF=BQD (đối đỉnh)
QBD=EFQ (so le trong)
=> đồng dạng
=> EF/BD=EQ/QD => 2EI/2OD=EQ/QD
chứng minh tam giác EQI đồng dạng DQO vì có 2 góc đối đỉnh và 2 góc so le trong
=> góc EQI=DQO
=> I, Q, O thẳng hàng
mà A là trung điểm của AP (AEPF là hcn)
=> I, A thằng hàng
=> A, Q, O thẳng hàng
a: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
=>ΔADB đồng dạng với ΔHDA
=>AB/AH=DB/AD
=>AB*AD=AH*BD
b: \(BD=\sqrt{6^2+8^2}=10cm\)
AH=6*8/10=4,8cm
c: Xet ΔHDK vuông tại H và ΔHBA vuông tại H có
góc HDK=góc HBA
=>ΔHDK đồng dạng với ΔHBA
=>DK/BA=HD/HB=6^2/8^2=36/64=9/16
a: Xét ΔHDA vuông tại H và ΔADB vuông tạiA có
góc ADB chung
Do đo: ΔHDA đồng dạng với ΔADB
b: Ta có: ΔHDA đồg dạng với ΔADB
nen DH/DA=DA/DB
hay \(DA^2=DH\cdot DB\)