K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

A B C D E H M N K 1 1 1 2

a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)

Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\)\(\widehat{ADM}=\widehat{BCM}\)

\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)

b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )

Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)

\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra EA = EK

c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)

Xét \(\Delta AHB\)có \(BM\perp AH\)\(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)

\(\Rightarrow\widehat{ANH}=90^o\)

xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)

\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)

Xét \(\Delta MHN\)và \(\Delta AHB\)có  : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)

\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)

Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)

Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)

\(\Rightarrow EM\perp MN\)

Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0