K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔDAK vuông tại D có

\(\widehat{ABD}=\widehat{DAK}\left(=90^0-\widehat{ADB}\right)\)

Do đó: ΔABD~ΔDAK

b: Ta có:ΔABD vuông tại A

=>\(BD^2=AB^2+AD^2\)

=>\(BD^2=5^2+12^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Ta có: ΔABD~ΔDAK

=>\(\dfrac{AD}{DK}=\dfrac{AB}{DA}\)

=>\(\dfrac{5}{DK}=\dfrac{12}{5}\)

=>\(DK=\dfrac{25}{12}\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

AI ghét MAi ANH thì kết bạn nha!

MK NÓI CHo CÁC BẠN BIẾT ĐINH THỊ MAI ANH LÀ NGƯỜI NHƯ THẾ NÀO:

+ MẬT DẠY,HAY CHỬI TỤC,NÓI BẬY

+ LUÔN ĐI CƯỚP NICK CỦA NGƯỜI KHÁC

+ NGƯỜI LỪA ĐẢO

+ LUÔN NÓI THÂN MẬT TRƯỚC NHỮNG NGƯỜI BÉ TUỔI

+.......................RẤT NHIỀU MK KO KỂ HẾT ĐC

7 tháng 5 2016

Bạn vẽ hình nhé

a) TH đồng dạng: góc-góc

b) Tính BC (PYTHAGO)

Tính BH bằng cách tính diện tích tam giác vuông hoặc dùng tam giác đồng dạng.

KA/KH dùng tính chất phân giác.

c)Sao mình vẽ không đồng dạng nhỉ. Đề có sai không thế.

a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:

\(DB^2=BC^2+CD^2\)

\(\Leftrightarrow DB^2=12^2+9^2=225\)

hay DB=15(cm)

Xét ΔBDC có 

BE là đường phân giác ứng với cạnh DC

nên \(\dfrac{EC}{ED}=\dfrac{BC}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)

b: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)