Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M là trung điểm của AB nên AM = MB = 20 : 2 = 10 (cm)
Diện tích hình thang AMCD là : \(\frac{\left(10+20\right)\times15}{2}=225\) (cm2)
b) Diện tích tam giác DBC là : (20 x 15) : 2 = 150 (cm2)
Tỉ số giữa diện tích tam giác BDC với hình thang AMCD là :
\(\frac{150}{225}=\frac{2}{3}\)
c)
SABN = \(\dfrac{1}{4}\) SABC ⇒ SABN = 240 : 4 = 60 (cm2)
SAMN = \(\dfrac{1}{4}\) SABN ⇒ SAMN = 60 : 4 = 15 (cm2)
Do SABN = SACM = \(\dfrac{1}{4}\) SABC ⇒ SBIM = SCIN
8,1 x 8,1 = 65,61 ( cm2 )
Vì AM = 1/3 AB nên MB gấp 2 lần AM
=> MB là : 8,1 : 3 x 2 = 5,4 ( cm )
Vì BN = 2/3 BC nên NC gấp 2 lần BN
=> BN là : 8,1 : 3 x 1 = 2,7 ( cm )
Diện tích tam giác BMN là :
5,4 x 2,7 : 2 = 7,29 ( cm2 )
AM = 8,1 : 3 x 1 = 2,7 ( cm )
AD = 8,1 ( cm )
Diện tích tam giác AMD là :
2,7 x 8,1 : 2 = 10,935 ( cm2 )
NC = 8,1 : 3 x 2 = 5,4 ( cm )
DC = 8,1 ( cm )
Diện tích tam giác DCN là :
8,1 x 5,4 : 2 = 21,87 ( cm2 )SDMN=SABCD - SBMN - SAMD - SDCN
=> Diện tích hình tam giác DMN là :
65,61 - 7,29 - 10,935 - 21,87 = 25,515 ( cm2 )b) Dễ thấy MN song song với AC nên MN sẽ vuông góc với BDXét tam giác MEB = tam giác NEB ( cạnh huyền cạnh góc vuông)=> EM=EN
a: \(S_{BNDA}=\dfrac{1}{2}\cdot\left(BN+AD\right)\cdot AB=\dfrac{1}{2}\cdot20\cdot\left(10+20\right)=30\cdot10=300\left(cm^2\right)\)
b: Xét ΔMAD vuông tại A và ΔNBA vuông tại B có
MA=NB
AD=BA
=>ΔMAD=ΔNBA
=>góc AMD=góc BNA
=>góc DAN+góc ADM=90 độ
=>DM vuông góc AN
Vì AM<AD nên MO<DO
\(S_{ADN}=\dfrac{1}{2}\cdot DO\cdot AN;S_{AMN}=\dfrac{1}{2}\cdot MO\cdot AN\)
mà DO>MO
nên \(S_{ADN}>S_{AMN}\)
=>\(S_{DON}>S_{MON}\)
a) Dễ thấy MN là đường trung bình của tam giác ABC nên MN // BC
=> Nếu kẻ đường cao MH và NK của hai tam giác BMC và BNC thì luôn có MH = NK
Mà hai tam giác này có chung cạnh đáy BC => diện tích tam giác MBC = diện tích tam giác NBC
b) Ta có : \(\begin{cases}\text{MC//BD}\\AM=MB\end{cases}\) => MC là đường trung bình của tam giác ABD
=> BD = 2MC