K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a: \(AK=KB=\dfrac{AB}{2}\)
\(DI=IC=\dfrac{DC}{2}\)
mà AB=DC
nên AK=KB=DI=IC
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
=>AI=CK và AI//CK
M là trung điểm của AI
=>\(AM=MI=\dfrac{AI}{2}\)
N là trung điểm của CK
=>\(NK=NC=\dfrac{CK}{2}\)
mà AI=CK
nên AM=NI=NK=NC
AKCI là hình bình hành
=>\(\widehat{KAI}=\widehat{KCI}\)
\(\widehat{KAI}+\widehat{DAI}=\widehat{DAB}\)
\(\widehat{KCI}+\widehat{KCB}=\widehat{BCD}\)
mà \(\widehat{KAI}=\widehat{KCI};\widehat{DAB}=\widehat{BCD}\)
nên \(\widehat{DAI}=\widehat{KCB}\)
Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{DAM}=\widehat{BCN}\)
AM=CN
Do đó: ΔADM=ΔCBN
b: Sửa đề: góc MAN=góc NCM
Xét tứ giác MANC có
MA//NC
MA=NC
Do đó: MANC là hình bình hành
=>\(\widehat{MAN}=\widehat{MCN}\)
AI//CK
\(M\in AI\)
\(N\in CK\)
Do đó: IM//NC
c: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(1)
AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,KI đồng quy