Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>\(\dfrac{DM}{MK}=\dfrac{AD}{CK}\) (theo hệ quả ta-lét)
mà AD=BC
=> \(\dfrac{DM}{MK}=\dfrac{BC}{CK}\) (*)
vì AD//CK
=> \(\dfrac{DN}{DK}=\dfrac{BC}{CK}\) (theo đl ta-lét) (**)
Từ (*) và (**) ta có
\(\dfrac{DN}{DK}=\dfrac{DM}{MK}\) =>\(\dfrac{MK}{DK}=\dfrac{DM}{DN}\)
ta có
\(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{MK}{DK}+\dfrac{DM}{DK}=\dfrac{DK}{DK}=1\) (đpcm)
hình mik ko vẽ đc xl!!!(GT+KL cx vậy)
a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)
Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)
từ 1 và 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)
b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)
CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)
VÌ \(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)
\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)
câu b sai rồi nhé, DC/AM chứ không phải là BC/AM và DC=AB( 2 cạnh đối của HBH)
2. A B C D O E F
+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)
\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)
+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)
+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)
\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)
Bài 1:
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MD=BN/NC
b: AM/MD=BN/NC
=>MD/AM=NC/BN
=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)
=>AD/AM=BC/BN
=>AM/AD=BN/BC
c: AM/AD=BN/BC
=>1-AM/AD=1-BN/BC
=>DM/AD=CN/CB
1. A B C D M N K E F
a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)
+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)
\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)
b) + Qua M kẻ EF // AB // CD
+ AD // CK
=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)
\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)
+ ME // AN
\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)
=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)
\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)
\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)
* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )