K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn xem lại đề, BM cắt CM tại F???

22 tháng 7 2021

ok bạn để mik xem lại đề ạ 

 

a: Ta có: \(\widehat{BAM}+\widehat{DAM}=\widehat{BAD}=90^0\)

\(\widehat{MAD}+\widehat{NAD}=\widehat{MAN}=90^0\)

Do đó: \(\widehat{BAM}=\widehat{NAD}\)

Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

\(\widehat{BAM}=\widehat{DAN}\)

Do đó: ΔABM=ΔADN

=>AM=AN

1: 

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

Trả lời:

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

a) => AMCN là hình bình hành

b)=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

                              ~Học tốt~

1 tháng 4 2020

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 180o - AMD = 180o- CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

=> AMCN là hình bình hành

=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

Hok tốt !

24 tháng 6 2017

A B C D M N O F E

a)

Tứ giác BMDN có BN=DM (=1/2AD=1/2BC) VÀ BN//DM (AD//BC) nên BMDN là hình bình hành. => BM//DN

Tam giác ADF có:

M là trung điểm của AD

ME//DF ( BM//DN )

Suy ra E là trung điểm của AF hay AE=EF       (1)

Tam giác BCE có:

N là trung điểm của BC

NF//DE ( BM//DN )

Suy ra F là trung điểm của CE hay EF=FC       (2)

Từ (1) và (2) suy ra AE=EF=FC

b) 

Xét \(\Delta AME\)và \(\Delta CNF\)

AM=CN ( =1/2AD = 1/2BC )

AE=CF (Theo câu a)

\(\widehat{MAE}=\widehat{NCF}\)(Vì AD//BC)

Suy ra \(\Delta AME=\Delta CNF\left(c.g.c\right)\)

\(\Rightarrow ME=NF\)( 2 cạnh tương ứng)

Mà ME//NF ( Vì BM//DN ) nên tứ giác MENF là hình bình bình hành

               Các bạn nhớ k ủng hộ mik nha! Thanks!

22 tháng 8 2023

.a.

Vì `EF` là đường trung trực MB.

=> `EM=EB`

=> `ΔEMB` cân tại E

=> \(\widehat{EMB}=\widehat{EBM}\)

Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)

Vì `AM=DN` mà AM//DN

=> Tứ giác `AMND` là hình bình hành.

b.

Từ câu (a) suy ra: 

ME//BF

BE//FM

=> Hình bình hành MEBF có `EF⊥MB`

=> Tứ giác MEBF là hình thoi

14 tháng 12 2017

 BÀI 1: Gọi I là giao điểm của EF và AB 
Vì EF là đường trung trực của MB nên BE = BF 
Xét hai tam giác BEI và BFI thì chúng bằng nhau ( t.hợp ch-cgv) 
=> IE = IF; EF vuông góc AB 
=> E và F đối xứng nhau qua AB 
* xét tứ giác MEBF có : 
- EM = EB; FM = FB ( È là đường trung trực của MB) 
mà E và F đối xứng nhau qua AB nên ta c/m được hai tam giác BEI và BFI bằng nhau ( t.hợp ch-cgv) 
=> EM = EB = FM = FB 
=> MEBF là hình thoi 
*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC 
để EBCN là hình thang cân thì EN = BC