K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

A B D C E G K a b

a) Vì ABCD là hình bình hành ( gt )

Và K thuộc BC nên

AD // BK Theo hệ quả của định lý Ta-let ta có :

\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có :

\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên

\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

c) bạn tự làm tiếp mỏi tay quá

6 tháng 6 2019

XVGMy6y.png

Giải nốt bài của Pác Hiếu:3

Đặt \(AB=a',AD=b\)

Áp dụng Đ/L Thales vào tam giác ABK,ta có:

\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)

Áp dụng Đ/L Thales vào tam giác ADG,ta có:

\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)

Nhân vế theo vế của (1);(2) ta có:

\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\)  không đổi.

24 tháng 2 2018

Để mình quất cho chứ mấy bạn khác tạm thời chưa quất được

a) Do BK // AD, nên \(\dfrac{EK}{AE}=\dfrac{BE}{ED}\left(1\right)\)

Do AB // DG, nên \(\dfrac{AE}{EG}=\dfrac{BE}{ED}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{EK}{AE}=\dfrac{AE}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có : \(\dfrac{AE}{EK}=\dfrac{DE}{EB}\Rightarrow\dfrac{AE}{AK}=\dfrac{DE}{DB}\left(3\right)\)

Tương tự : \(\dfrac{AE}{AG}=\dfrac{BR}{BD}\left(4\right)\)

Cộng theo từng vế của (3) và (4) ta có:

\(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{DB}=\dfrac{BD}{BD}=1\)

c) Đặt AB = a, AD = b thì \(\dfrac{BK}{KG}=\dfrac{a}{CG};\dfrac{CK}{b}=\dfrac{CG}{DG}\)

Nhân theo từng vế của hai đẳng thức trên, ta được :

\(\dfrac{BK}{b}=\dfrac{a}{DG}\) suy ra BK . DG = ab không đổi.

A B C D E K

25 tháng 4 2018

tự cao ghê nhen

26 tháng 1 2017

Hình bạn tự vẽ nhahehe

a) Chứng minh AB//DG và AD//BF

Từ đó theo Ta lét ta có

\(\Delta\)ADE có AD//BF ; F\(\in\)AE;B\(\in\)DE

\(\Rightarrow\)\(\frac{AE}{EK}=\frac{DE}{BE}\) (1)

\(\Delta\)DEG có DG//AB;A\(\in\)GE;B\(\in\)DE

\(\Rightarrow\)\(\frac{EG}{AE}=\frac{DE}{EB}\) (2)

Từ (1)(2) thì \(\frac{AE}{EK}=\frac{EG}{AE}\)

\(\Rightarrow\)\(AE^2=EG.EK\)

b)Chứng minh tương tự câu a theo talet có

\(\Delta\)ADE có \(\frac{AE}{AK}=\frac{DE}{DB}\)

\(\Delta\)DEG có\(\frac{AE}{AG}=\frac{BE}{BD}\)

Nên \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{DE}{DB}+\frac{BE}{DB}\)

Hay \(AE\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{BE+DE}{DB}=\frac{DB}{DB}=1\)

\(\Rightarrow\)\(\frac{1}{AK}+\frac{1}{AG}=\frac{1}{AE}\)

c)câu c sory muộn quá chưa nghĩ đượcgianroi

9 tháng 3 2017

Do AB song song Cd 

=> Áp dụng định lí Ta - lét được \(\frac{AB}{DG}=\frac{AE}{EG}=\frac{BE}{DE}\)

=> AB . EG = DG . AE

Do AD song song BK nên áp dụng định lí Ta lét được

\(\frac{AE}{AK}=\frac{DE}{BD}\)

Do AB sog song với CG nên áp dụng định lí Ta lét được

\(\frac{AE}{AG}=\frac{BE}{BD}\)

=> \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{BE}{BD}+\frac{DE}{BD}=1\)

=>\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

Ta có \(\frac{BK}{AD}=\frac{AB}{DG}=\frac{BE}{DE}\)

=>\(BK.DG=AB.AD\left(KHÔNG\right)DOI\)

10 tháng 3 2017

bó tay .com