Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có E,F lần lượt là trung điểm của BA,BC
=>EF là đường trung bình
=>EF//AC và EF=AC/2
Xét ΔDAC có
H,G lần lượt là trung điểm của DA,DC
=>HG là đường trung bình
=>HG//AC và HG=AC/2
=>EF//HG và EF=HG
Xét ΔABD có
E,H lần lượt là trung điểm của AB,AD
=>EH là đường trung bình
=>EH=BD/2
=>EH=AC/2=EF
Xét tứ giác EHGF có
EF//GH
EF=GH
EH=EF
Do đó: EHGF là hình thoi
b: Xét ΔEHF có Q,M lần lượt là trung điểm của EH,EF
=>QM là đường trung bình
=>QM//HF và QM=HF/2
Xét ΔGHF có
P,N lần lượt là trung điểm của GH,GF
=>PN là đường trung bình
=>PN//HF và PN=HF/2
=>QM//PN và QM=PN
Xét ΔHEG có HQ/HE=HP/HQ=1/2
nên PQ//EG
=>PQ vuông góc HF
=>PQ vuông góc QM
Xét tứ giác MNPQ có
MQ//NP
MQ=NP
góc PQM=90 độ
Do đó: MNPQ là hình chữ nhật
a: Xét ΔABD có
E là trung điểm của BA
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
có E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
suy ra EF là đường trung bình của tam giác ABC nên EF//=1/2AC (1)
GH là đường trung bình của tam giác ADC nên GH//=1/2AC (2)
Từ (1) và (2) suy ra EF//=GH nên EFGH là hình bình hành
Vì có hai cạnh đối song song và bằng nhau
Bài 2)
a) AK=1/2AB; CI=1/2CD
mà AB//=CD nên AK//=CI suy ra
AKCI là hình bình hành
do đó AI//CK
b) Xét tam giác CDN
có I là trung điểm CD mà IM//CN
nên M là trung điểm DN hay DM=MN (3)
(Theo định lý đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba)
Tương tự xét tam giác ABM cũng có BN=MN (4)
Từ (3) và (4) suy ra DM=MN=NB
Bài 3)
Câu a) làm ý như câu b) bài 2)
bâu b) chứng minh giống ý a bài 2 ta được AECF là hình bình hành
nên AF//CE => FM//EN (5)
Tam giác ABM=tam giác CDN (cgc) suy ra AM=CN
mà EN=1/2AM (t/c đường trung bình của tam giác)
FM=1/2 NC (t/c đường trung bình của tam giác)
do đó EN=MF (6)
từ (5) và (6) suy ra EMFN là hình bình hành.
câuc) I và J lần lượt là trung điểm của BC và AD
nên IJ đi qua trung điểm của EF (7)
MN và EF là hai đường chéo của hình bình hành ENFM nên MN đi qua trung điểm của EF (8)
Từ (7) và (8) suy ra 3 đường thẳng IJ, MN, EF đồng quy tại 1 điểm
Bạn hỏi dài quá. lần sau mỗi lần hỏi thì chỉ nên ghi 1 câu thôi, người trả lời đỡ ngại
và bạn nhanh chóng có được đáp án.
Chúc bạn học giỏi.