Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vi ABCD la hbh(gt)
=>AB=CD;AB//CD
Ma M€AB;N€CD
=>MB//ND
Vi M la trung diem cua AB
=>MA=MB=AB/2
Vi N la trung diem cua CD
=>CN=ND=CD/2
Ma AB=CD(cmt)
=>MB=DN
Tg DMBN co:
MB//DN(cmt)
MB=ND(cmt)
=>Tg DMBN la hbh(dh)
A B C D M N O F E
a)
Tứ giác BMDN có BN=DM (=1/2AD=1/2BC) VÀ BN//DM (AD//BC) nên BMDN là hình bình hành. => BM//DN
Tam giác ADF có:
M là trung điểm của AD
ME//DF ( BM//DN )
Suy ra E là trung điểm của AF hay AE=EF (1)
Tam giác BCE có:
N là trung điểm của BC
NF//DE ( BM//DN )
Suy ra F là trung điểm của CE hay EF=FC (2)
Từ (1) và (2) suy ra AE=EF=FC
b)
Xét \(\Delta AME\)và \(\Delta CNF\)CÓ
AM=CN ( =1/2AD = 1/2BC )
AE=CF (Theo câu a)
\(\widehat{MAE}=\widehat{NCF}\)(Vì AD//BC)
Suy ra \(\Delta AME=\Delta CNF\left(c.g.c\right)\)
\(\Rightarrow ME=NF\)( 2 cạnh tương ứng)
Mà ME//NF ( Vì BM//DN ) nên tứ giác MENF là hình bình bình hành
Các bạn nhớ k ủng hộ mik nha! Thanks!
a: Xét tứ giác DMBN có
BM//DN
BM=DN
DO đó: DMBN là hình bình hành
b: Xét ΔAFB có
M là trung điểm của AB
ME//FB
Do đó: E là trung điểm của AF
=>AE=EF(1) và ME là đường trung bình của ΔAFB
c: Xét ΔDEC có
N là trung điểm của CD
NF//DE
DO đo:F là trung điểm của EC
=>EF=FC(2)
Từ (1) và (2) suy ra AE=EF=FC
Ta có:
a) \(F=-\frac{1}{2}x^2-2x-6=-\frac{1}{2}\left(x^2+4x+4\right)-4\)
\(=-\frac{1}{2}\left(x+2\right)^2-4\le-4< 0\left(\forall x\right)\)
=> F luôn âm với mọi x
b) \(G=\left(x-1\right)\left(x+2\right)-5=x^2+x-2-5\)
\(=x^2+x-7=\left(x^2+x+\frac{1}{4}\right)-7-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{29}{4}\)
Ko thể xác định G luôn âm hay dương
A B C D O E F
vì O là giao điểm 2 đường chéo AC và BD của hbh ABCD nên O, là trung điểm AC và BD
=> OA=OC (1)
ta có AE = FC (GT) (2)
trừ theo vế của (1) và (2) ta được
OA-AE = OC - FC
OE = OF => O là trung điểm EF
xét tứ giác EBFD có O là trung điểm đường chéo BD, O là trung điểm đường chéo EF => EBFD là hbh