K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho mình hỏi vs ạ. Giải ra và vẽ hình dùm mk,mk cám ơn ạBài 1: Cho hbh ABCD có AD=2AB; A=60 độ. Gọi E và F lần lượt là tđ của BC và ADa) CM: AE vuông góc với BFb) CM: tứ giác BFDC là hình thang cânc) Lấy điểm M đối xứng của A qua B. CM: tg BMCD là hcnd) CM: M,E,D thẳng hàngBài 2: Cho tam giác ABC vuông tại A có BAC = 60 độ.kẻ tia Ax song song vs BC.Trên Ax lấy điểm D sao cho AD=DCa) Tính các góc BAC và DACb) CM: tứ...
Đọc tiếp

Cho mình hỏi vs ạ. Giải ra và vẽ hình dùm mk,mk cám ơn ạ

Bài 1: Cho hbh ABCD có AD=2AB; A=60 độ. Gọi E và F lần lượt là tđ của BC và AD

a) CM: AE vuông góc với BF

b) CM: tứ giác BFDC là hình thang cân

c) Lấy điểm M đối xứng của A qua B. CM: tg BMCD là hcn

d) CM: M,E,D thẳng hàng

Bài 2: Cho tam giác ABC vuông tại A có BAC = 60 độ.kẻ tia Ax song song vs BC.Trên Ax lấy điểm D sao cho AD=DC

a) Tính các góc BAC và DAC

b) CM: tứ giác ABCD là hình thang cân

c) Gọi E là tđ của BC.CM: tứ giác ADEB là hình thoi

d) cho AC=8cm,AB=5cm.Tính diện tích hình thoi

Bài 3: Cho hbh ABCD có AB=2AD.Gọi E,F theo thứ tự là tđ của AB và CD

a) các tứ giác AEFD,AECF là hình gì? Vì sao?

b) Gọi M là gđ của AF và DE,gọi N là gđ của BF và CE.CMR: tứ giác EFMN là hcn

c) HBH ABCD nếu có thêm điều kiện gì thì EFMN là hình vuông?

 

1

Bài 3: 

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

b: Xét tứ giác BEFC có 

BE//CF

BE=CF

Do đó: BEFC là hình bình hành

mà BE=BC

nên BEFC là hình thoi

Xét ΔEDC có 

EF là đường trung tuyến

EF=DC/2

Do đó: ΔEDC vuông tại E

Xét tứ giác EMFN có

\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)

Do đó: EMFN là hình chữ nhật

c: Để EMFN là hình chữ nhật thì EM=FN

=>ED=AF

=>AEFD là hình vuông

=>\(\widehat{BAD}=90^0\)

20 tháng 7 2021

Bài 1
a/ AB // DI 
Mà AM thuộc tia AB => AM // DI (1)
=> Tứ giác AIDM là hình thang
E là trung điểm của AD (gt) => ED = EA
Xét △EDI và △EAM có:
 - Góc DEI = Góc AEM (đối đỉnh)
 - ED = EA (cmt)
 - Góc EDI = Góc EAM (slt)
=> △EDI = △EAM (g.c.g)
=> AM = DI (2)
Từ (1) và (2). Vậy: Tứ giác AIDM là hình bình hành (đpcm)

b/ Chứng minh tương tự câu a

c/ Hình bình hành BICN có: BN = IC = CD/2 (I là trung điểm của CD)
 Hình bình hành AIDM có: MA = ID = CD/2 (I là trung điểm của CD)
=> BN = MA (3)
Mặt khác ta có: H là trung điểm của AB (gt) hay HA = HB (4)
Từ (3) và (4) suy ra: BN + HA = HB + MA 
Hay: HM = HN
Hay: H là trung điểm của MN (đpcm

Bài 2:  Đề sai nên không thể giải

20 tháng 7 2021

c.ơn nha

 

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

9 tháng 9 2018

k mk đi 

ai k mk 

mk k lại

thanks

10 tháng 9 2018

Xét tứ giác AMCN có AM song song và bằng CN nên nó là hình bình hành.

Suy ra AN song song và bằng MC.

Xét tam giác DMH và tam giác BNI có:

DM = BN  

\(\widehat{MDH}=\widehat{NBI}\)  (So le trong)

\(\widehat{DMH}=\widehat{BNI}\)   (Cùng bằng góc \(\widehat{HCN}\))

\(\Rightarrow\Delta DMH=\Delta BNI\left(g-c-g\right)\)

\(\Rightarrow\) IN = HM

Vậy nên AI = HC.

Từ đó ta có AI = AN - IC = MC - MH = HC. 

Xét tứ giác AICH có AH song song và bằng IC nên AICH là hình bình hành. Suy ra AH = IC.

Ta thấy ngay trong tam giác DIC, HF là đường trung bình. Vậy thì HF song song và bằng một nửa IC. Tương tự EI song song và bằng một nửa AH. Vậy nên EIFH là hình bình hành.

Để hình bình hành EIFH là hình chữ nhật thì EF = HI.

Xét tam giác BHC có N là trung điểm BC, IN // HC nên IN là đường trung bình của tam giác. Vậy thì IB = HI.

Tương tự HI = DH.

Từ đó ta có IH = BD/3

Mà EF = BC nên để EIFH là hình chữ nhật thì hình bình hành ABCD có BD = 3BC.

9 tháng 11 2019

võ thuỵ bảo na             

Xem lại đề 

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

Suy ra: DM//BN

hay DM//BK

=>BMDK là hình thang

b: Xét tứ giác BMNA có

BM//NA

BM=NA

Do đó: BMNA là hình bình hành

mà BM=BA

nên BMNA là hình thoi

Suy ra: MA vuông góc với BN tại P

Ta có: MD//BN

nên MQ//PN

Xét tứ giác AMCN có 

MC//AN

MC=AN

DO đó: AMCN là hình bình hành

Suy ra: AM//CN

=>PM//NQ

Xét tứ giác PMQN có 

PM//QN

PN//QM

Do đó: PMQN là hình bình hành

mà \(\widehat{MPN}=90^0\)

nên PMQN là hình chữ nhật

28 tháng 11 2019

76276712