K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2021

Đặt 8t=2x

\(d\left(8t\right)=2dx\Rightarrow\frac{d\left(8t\right)}{2}=dx\)

Đổi cận x=0 t=0       x=8 t=2

3 tháng 4 2021

a , ta có:AE//CF (vì cùng vuông góc vsBD)

=> góc FCO= góc EAO (vì so le trong )

      OA = OC (theo t/c hình bh )

xét 2 tam giác vuông OAE và OCF có:

           góc FOC = góc EAO ( cm trên )

            OA = OC (cmt)

   =>tg OAE = tg OCF (cạnh huyền - góc nhọn )

   =>OE = OF ( 2 cạnh tương ứng )

 b. ta có : AE// CF ( theo a ) (1)

               AE = CF ( vì tg OAE= tg OCF ( theo a )) (2)

 từ (1) và (2) => AECF là hbh

 ( hi vọng đúng !!)

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)