K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN 
a) C/m: DN=BC và CK vuông góc MN 

Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt 
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N) 
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong) 
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC 
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) , 
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN 
→ ∆MCN cân đỉnh C → K thuộc trung trực MN 
→ CK vuông góc MN 

b) C/m BKCD nội tiếp 
Gọi E là trung điểm MC, F là trung điểm CN ta có : 
KE vuông góc MC, KF vuông góc CN , BE = DF 
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung, 
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...) 
→ ∆KEC = ∆KFC → EK = FK 
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên) 
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF 
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng 
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn 
( quỹ tích cung chứa góc ) → BKCD nội tiếp

27 tháng 11 2018

bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
16 tháng 3 2018

Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH