K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
V
violet
Giáo viên
11 tháng 4 2016
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_X = 0,0185u > 0\)
Phản ứng là tỏa năng lượng: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185u.c^2 = 2K_{He} - (K_p+K_{Li}) \)
=> \(17,223 = 2K_{He} - K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,34 MeV.\)
VT
26 tháng 1 2018
Ta có: mtrước-msau=mLi+mphôton-2mX=0,0187u>0
ð Phản ứng tỏa năng lượng
ð Wtỏa = (mtrước-msau).c2=Ksau-Ktrước
ð 0,0187u.c2=2Kx – (KP+KLi)=2KX-(2,2MeV+0)
KX»9,81MeV
Đáp án A
18 tháng 6 2015
Q=(mt-ms).931 MeV= -1.21 MeV
mà Q=Ks-Kt >> -1.21=Kp+Kx-4 >> Kp+Kx=2.79
>> 1/2MxVx+1/2MpVp=2.79
mà Vp=Vx >> 1/2Vp(Mp+Mx)=2.79 >> Vp=0.5.10^7m/s >> Kp=0.1306MeV
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,342MeV.\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)
=> \(\alpha \approx 168^039'.\)
áp dụng định lí hàm cos trong tam giác thì:
a gần bằng 168o39'( 168 độ, 39 phút)
nhớ là gần bằng thui nha