K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

cậu xem đúng thì k  y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản  có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2  sao cho |x2-x1| >1  (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0

mk mới hok lớp 8 nên cái tay bó tay!!! ^^

346456454574575675756768797835153453443457657656565

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)

29 tháng 8 2021

a)HS đồng biến

`=>2m-1>0`

`=>2m>1=>m>1/2`

b)Gọi điểm cố đính mà hàm số luôn đi qua với mọi m là `A(x_o,y_o)`

`=>y_o=(2m-1).x_o +m-7`

`<=>y_o=2mx_o-x_o +m-7`

`<=>m(2x_o +1)-x_o-y_o-7=0`

`<=>{(2x_o +1=0),(-x_o-y_o-7=0):}`

`<=>x_o=-1/2,y_o=-13/2`

`=>A(-1/2,-13/2)`

Vậy điểm cố đính mà hàm số luôn đi qua với mọi m là `A(-1/2,-13/2)`

a: Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

7 tháng 1 2018

1. Xét : m^2-2m+3 = (m^2-2m+1)+2 = (m-1)^2+2 > 0

=> hàm số trên luôn đồng biến trên tập xác định của nó

2. Để (d) đi qua A(2;8) thì :

8 = (m^2-2m+3).2 - 4

=> m=3 hoặc m=-1

3. Để (d) // (d') : y=3x+m-4 thì : m^2-2m+3=3 và -4 khác m-4

=> m=0 hoặc m=2 và m khác 0 => m=2

Tk mk nha