Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập xác định \(x< \frac{1}{2}\)
Ta có : \(y'=1-\frac{2}{1-2x}=\frac{-1-2x}{1-2x}\Rightarrow y'=0\Leftrightarrow x=-\frac{1}{2}\)
Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\)
Hàm số nghịch biến trên \(\left(-\frac{1}{2};\frac{1}{2}\right)\)
Ta có :\(y'=\left(6x-2\right)e^{3x^2-2x-x}\)
Hàm đồng biến trên \(\left(\frac{1}{3};+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;\frac{1}{3}\right)\)
TXĐ: D=(\(-\infty;2\)]
\(y'=1+2.\dfrac{-1}{2\sqrt{2-x}}\)\(=1-\dfrac{1}{\sqrt{2-x}}\)
Ta có bảng biến thiên sau:
x | \(-\infty\) 1 2 |
y' | + 0 - || |
Vậy hàm số đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;2\right)\)
*Xét hàm số: y= -x3 + 2x2 – x – 7
Tập xác định: D = R
\(y'\left(x\right)=-3x^2+4x-1\); \(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )
Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).
Tập xác định: D = R{1}
\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)
Vậy hàm số nghịch biến trong từng khoảng (-∞,1) và (1, +∞)
Tập xác định \(D=R\)
Ta có : \(y'=3^x\ln3\left(\sqrt{x^2+1}-x\right)+3^x\left(\frac{x}{\sqrt{x^2+1}}-1\right)\)
\(=3^x\left(\sqrt{x^2+1}-x\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)
Ta có : \(\begin{cases}\sqrt{x^2+1}-x>\sqrt{x^2-x}\ge0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)
\(\Rightarrow y'>0\) với mọi x
Vậy hàm số đồng biến trên R
\(y=x^4+mx^3-2x^2-2mx+1\) (1)
Đạo hàm \(y'=4x^2+3mx^2-4x-3m=\left(x-1\right)\left[4x^2+\left(4+3m\right)x+3m\right]\)
\(y'=0\) \(\Leftrightarrow\) \(\begin{cases}x=1\\4x^2+\left(4+3m\right)x+3m=0\left(2\right)\end{cases}\)
Hàm số có 2 cực tiểu \(\Leftrightarrow\) y có 3 cực trị \(\Leftrightarrow\)\(y'=0\) có 3 nghiệm phân biệt
\(\Leftrightarrow\left(2\right)\) có 2 nghiệm phân biệt khác 1 \(\Leftrightarrow\) \(\begin{cases}\Delta=\left(3m-4\right)^2>0\\4+4+3m+3m\ne0\end{cases}\) \(\Leftrightarrow\) \(m\ne\pm\frac{4}{3}\)
Giả sử : Với \(m\ne\pm\frac{4}{3}\), thì \(y'=0\) có 3 nghiệm phân biệt \(x_1,x_2,x_3\)
Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu
Kết luận : Vậy hàm số có 2 cực tiểu khi \(m\ne\pm\frac{4}{3}\)
\(\begin{cases}\frac{x_1+x_2}{2}=-2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=9\end{cases}\)
Tọa độ trung điểm cực đại và cực tiểu là (-2;9) không thuộc đường thẳng
\(y=\frac{1}{2}x\Rightarrow m=-3\) không thỏa mãn
Vậy m=1 thỏa mãn điều kiện đề bài
\(y'=1-2.cosx.sinx=1-sin2x\le0,\forall x\)
Vậy hàm số nghịch biến trên R
Đạo hàm của hàm số y = x +` cos^2(x)`
Đạo hàm của x là 1
Đạo hàm của `cos^2(x) là -2sin(x)cos(x)` (sử dụng công thức đạo hàm của `cos^2(x)`).
Vậy, đạo hàm của hàm số y = x + `cos^2(x)` là `dy/dx = 1 - 2sin(x)cos(x).`
Khi `sin(x)cos(x) < 1/2`, tức là x thuộc khoảng `(0, π)` hoặc `(2π, 3π)`, ta có `1 - 2sin(x)cos(x) > 0.`
Khi `sin(x)cos(x) > 1/2`, tức là x thuộc khoảng `(π, 2π)`, ta có `1 - 2sin(x)cos(x) < 0.`
Vậy, trên các khoảng `(0, π)` và `(2π, 3π)`, đạo hàm là dương, và trên khoảng `(π, 2π)`, đạo hàm là âm.
Kết luận: hàm số y = x + `cos^2(x)` tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`
Vậy, tính đơn điệu của hàm số y = x + `cos^2(x)` là tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`