\(y=x^4-2mx^2+m^2-m\left(1\right)\), với m là tham số thực. Tìm m để đồ thị củ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Ta có \(y'=4x^3-4mx=4x\left(x^2-m\right);y'=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số có 3 điểm cực trị \(\Leftrightarrow\) phương trình \(y'=0\) có 3 nghiệm phân biệt là \(x=0;x=\pm\sqrt{m}\) suy ra đồ thị của hàm số có 3 điểm cực trị là \(A\left(0;m^2-m\right);B\left(-\sqrt{m};-m\right);\overrightarrow{AB}=\left(-\sqrt{m};-m^2\right);\overrightarrow{AC}=\left(\sqrt{m;}-m^2\right)\)

Do đó \(AB=AC=\sqrt{m^4+m}\) nên yêu cầu bài toán được thỏa mãn 

\(\Leftrightarrow\widehat{BAC}=120^0\Leftrightarrow\left(\overrightarrow{AB};\overrightarrow{AC}\right)=120^0\)\(\Leftrightarrow\frac{\overrightarrow{AB}\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|}=\frac{1}{2}\)

                           \(\Leftrightarrow\frac{-\left(m\right)+m^4}{m+m^4}=-\frac{1}{2}\Leftrightarrow2m^4-2m=-m-m^4\)

                          \(\Leftrightarrow3m^4-m=0\Leftrightarrow m\left(3m^3-1\right)=0\Leftrightarrow m=0\) hoặc \(m=\frac{1}{\sqrt[3]{3}}\)

Kết hợp với điều kiện (*) ta có giá trị cần tìm là \(m=\frac{1}{\sqrt[3]{3}}\)

23 tháng 4 2016

Đáp số : \(m=\frac{1}{\sqrt[3]{3}}\)

23 tháng 4 2016

Đáp số : \(m=-\frac{1}{\sqrt[3]{3}};m=-\sqrt[3]{\left(2+\sqrt{3}\right)^2}\)

26 tháng 3 2016

\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)

Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0

- Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)

\(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\)\(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)

\(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)

                                                                \(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)

28 tháng 3 2016

Ta có : \(y'=4x^3+4mx;y'=0\Leftrightarrow4x\left(x^2+m\right)=0\Leftrightarrow\begin{cases}x=0\\x=\pm\sqrt{-m}\end{cases}\) (m<0)

Gọi \(A\left(0;m^2+m\right);B\left(\sqrt{-m;}m\right);C\left(-\sqrt{-m};m\right)\) là các điểm cực trị

\(\overrightarrow{AB}=\left(\sqrt{-m},-m^2\right);\overrightarrow{AC}=\left(-\sqrt{-m},-m\right)\)

Tam giác ABC cân tại A nên góc 120 độ chính là góc A

\(\widehat{A}=120^0\Leftrightarrow\cos A=-\frac{1}{2}\Leftrightarrow\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{-\sqrt{-m}.\sqrt{-m}+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{m+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow2m+2m^4=m-m^4\Leftrightarrow3m^4+m=0\)

                \(\Leftrightarrow\begin{cases}m=0\\m=-\frac{1}{\sqrt{3}}\end{cases}\) mà m=0 thì loại

Vậy \(m=-\frac{1}{\sqrt{3}}\) thỏa mãn bài toán

 

18 tháng 8 2020

Tại sao vectơ AC (- căn-m,-m)

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

22 tháng 4 2016

Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)

a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)

              \(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)

              \(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)

                                            \(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)

Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm

b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA

Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)

\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)

Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)

                                                             \(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1

Vậy m = 0 hoặc m = 1 là giá trị cần tìm

c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm  của tam giác ABC

<=> \(y_A+2y_B=0\)

\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)

\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm

Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán

14 tháng 1 2020

bn ơi cho mk hỏi cái công thức tính S tam giác ABC=1/2|yB-yA|.|yC-yB| ở đâu vậy ạ

 

23 tháng 4 2016

Gọi \(H=BC\cap Oy\) thì AH là đường cao tam giác ABC

Ta có \(H\left(0;c-\frac{b^2}{4a}\right)\Rightarrow AH=\frac{b^2}{4\left|a\right|}\)

\(\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{AB}\Rightarrow R=\frac{AB}{2\sin\widehat{ACH}}=\frac{AB^2}{2AH}=\frac{b^3-8a}{8\left|a\right|b}\)

Từ yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\R=1\end{cases}\) \(\Leftrightarrow\begin{cases}m>0\\m^3-2m+1=0\end{cases}\)

\(\Leftrightarrow m=1\) hoặc \(m=\frac{-1+\sqrt{5}}{2}\)