K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

giúp mik với ạ

13 tháng 12 2020

Mà GTLN hay GTNN vậy

30 tháng 11 2023

Sửa đề: Sao cho biểu thức T đạt GTLN

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)

=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)

\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(-4m^2+8m>=0\)

=>\(-4\left(m^2-2m\right)>=0\)

=>\(m^2-2m< =0\)

=>\(m\left(m-2\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)

=>0<=m<=2

TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)

=>Loại

\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)

\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)

\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)

\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)

\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)

\(=-2\left(m^2-m+1\right)\)

\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)

Dấu '=' xảy ra khi m=1/2

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:
PT hoành độ giao điểm:

$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$

$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$

Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb

$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$

$\Leftrightarrow m(2-m)>0$

$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:

$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:

$T=y_1+y_2-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$

$=-2m^2+2m-2$

Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.

NV
21 tháng 1 2021

\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)

- Với \(m=-1\) thỏa mãn

- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)

\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)

\(\Rightarrow-1< m\le0\Rightarrow m=0\)

- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)

\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)

\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)

Vậy \(m=\left\{-2;-1;0\right\}\)

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

14 tháng 2 2022

Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)

\(\Leftrightarrow mx-2x+2m-3\ge0\)

\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)

\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)

\(\Rightarrow1\le m\le\dfrac{11}{6}\)

NV
21 tháng 3 2022

Hàm có TXĐ là R khi và chỉ khi \(x^2-2mx-2m+3\ge0;\forall x\)

\(\Leftrightarrow\Delta'=m^2+2m-3\le0\)

\(\Leftrightarrow-3\le m\le1\)

14 tháng 3 2021

Hàm số có tập xác định là R \(\Leftrightarrow x^2-2mx-2m+3\ge0\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2+\left(2m-3\right)\leq0\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)\le0\Leftrightarrow-3\le m\le1\).

Các gt nguyên âm của m thoả mãn là : -3; -2; -1.

Vậy có 3 gt nguyên âm của m thoả mãn.

 

NV
19 tháng 12 2020

\(m\ne\pm1\)

ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)

Miền xác định của hàm là miền đối xứng

Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn

\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\) 

\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)