K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

8 tháng 4 2017
a/ Phương trình hoành độ giao điểm y=x^2 và y=x+2 =>x^2=x+2 <=>x^2-x-2=0 denta=1-4*(-2)=9 x1=2=>y=4(2;4) x2=-1=>y=1(-1;1) M(0,5;2,5)
21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

8 tháng 2 2021

1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)

\(\Leftrightarrow x^2-x-m=0\) ( I )

Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)

- Để 2 hàm số cắt nhau tại hai điểm phân biệt

<=> PT ( I ) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{1}{4}\)

2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)

TH1 : \(x_1-x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

TH2 : \(x_1-x_2=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

Vậy m = 2 thỏa mãn yêu cầu đề bài .

5 tháng 5 2021

theo tôi bạn có thể tách (x1-x2)=(x1+x2)2-4x1x2 cho nhanh

 

25 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)

\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)

Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)

\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)

\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)

26 tháng 3 2022

Xét Pt hoành độ.......

\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)

Để ... thì Δ'>0

1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)

Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.

*) Theo Hệ thức Viet ta có: 

S=x1+x2=2 và P=x1x2= -m2-2m-2

*)Ta có: 

\(\text{x^3_1 ​ +x ^3_2 ​ =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)

⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68

⇔3m2+6m-24=0⇔m=2 và m=-4 

KL: