\(y=x^2-4x+3\) (1)

Viết phương trình đường thẳng (d) biết (d) đi qua...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

Hỏi đáp Toán

9 tháng 5 2020

Hiện tại là characters và symbols của mình ko bấm được bạn ạ, máy tính mình hư mang đi sửa rồi, gợi ý thôi nhé :))

Câu a đơn giản thôi, bạn viết véctơ AB ra, nghĩa là lúc này, đường thẳng đi qua 2 điểm AB có véctơ chủ phương là AB, bạn viết véctơ pháp tuyến ra là được, rồi chọn 1 trong 2 điểm A,B làm x0,y0 là ok rồi :))

Còn câu b, trước hết là bạn phải viết ptđt của delta đã, trong sgk có instructions đó :)

Rồi sau đó, như mình đã nói với bạn hồi chiều, 2 đt song song thì có chung véctơ pháp tuyến, giờ bài toán chỉ cong là: viết ptđt đi qua điểm A và có véctơ pháp tuyến là...

Đơn giản thôi hà :D

NV
3 tháng 5 2019

Bài 1:

\(2c=8\Rightarrow c=4\)

Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)

Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)

Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)

Bài 2:

\(2a=10\Rightarrow a=5\)

\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)

Phương trình elip:

\(\frac{x^2}{25}+\frac{y^2}{16}=1\)

NV
3 tháng 5 2019

Câu 3:

\(x-2y+3=0\Rightarrow x=2y-3\)

Thay vào pt đường tròn ta được:

\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)

\(\Leftrightarrow5y^2-20y+15=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)

Tọa độ 2 giao điểm: \(A\left(-1;1\right)\)\(B\left(3;3\right)\)

Câu 4:

Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)

Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0 a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1) c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1) d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC e) Viết...
Đọc tiếp

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0
a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC
b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1)
c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1)
d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC
e) Viết phương trình đường thẳng d qua A và song song với Δ
f) Viết phương trình đường thẳng d’ qua C và vuông góc với đường thẳng Δ
g) Viết phương trình đường tròn (C) tâm B và đi qua điểm C.
h) Viết phương trình đường tròn (C) đường kính AB.
i) Viết phương trình đường tròn (C) đi qua 3 điểm A, B

k) Cho đường thẳng d:\(\left\{{}\begin{matrix}x=2+2t\\y=3+2t\end{matrix}\right.\) Tìm điểm N∈ d sao cho khoảng cách từ N đến đường thẳng \(\Delta\) bằng 3

l) Cho 3 đường thẳng d\(_1\) :x+y+3=0 . d\(_2\) : x-y-4=0 , d\(_3\):x-2y = 0 Tìm điểm M ∈ d\(_3\) để
d (M; d\(_1\)) = 2d (M; d\(_2\))

0
17 tháng 5 2017

Các đường thẳng đều có phương trình dạng \(y=ax+b\). Các đường thẳng song song với nhau đều có cùng một hệ số a. Do đó các phương trình của các đường thẳng song song với đường thẳng \(y=3x-2\) đều có hệ số \(a=3\)

a) Phương trình cần tìm có dạng \(y=3x+b\). Vì đường thẳng đi qua điểm \(M\left(2;3\right)\), nên ta có \(3=3.2+b\Leftrightarrow b=-3\)

Vậy phương trình của đường thẳng đó là \(y=3x-3\)

b) \(y=3x+5\)

8 tháng 5 2016

Bạn không biết làm câu nào vậy

8 tháng 5 2016

a\(2x+3y-7=0\)

b\(3x-2y-4=0\)

c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d  góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của  \(\Delta\) , do góc giữa d và  \(\Delta\)  bằng  \(45^0\) nên ta có phương trình :

\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)

Giải phương trình ta thu được :

\(l=\frac{1}{5}\) hoặc \(l=-5\)

* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)

* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)

d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)

Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :

\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)

                              \(\Leftrightarrow b\left(12a+5b\right)=0\)

- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)

- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :

\(5x-12y+2=0\)