K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

Gọi A là giao điểm \(k_3\) và \(k_4\Rightarrow\) tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}y=2x-1\\x-3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-3y=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

3 đường thẳng đồng quy \(\Leftrightarrow d\) đi qua A

\(\Rightarrow\left(m^2-3m\right).1+2m-5=1\)

\(\Leftrightarrow m^2-m-6=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

28 tháng 2 2023

(2): =>(4x^2-1)(x^2-6x+9)<=0

=>(4x^2-1)(x-3)^2<=0

TH1: (4x^2-1)(x-3)^2=0

=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

TH2: (4x^2-1)(x-3)^2<0

=>4x^2-1<0

=>-1/2<x<1/2

30 tháng 5 2019

Đáp án B

+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:

suy ra d và d’ cắt nhau tại M( m-1; 3m-1)

+  Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có

3m-1= -m( m-1) + 2 hay m2+ 2m-3=0

Suy ra m=1 hoặc m= -3

Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ :  y= 3x+ 2 và d’’: y= -x+ 2  phân biệt và đồng quy tại M(0; 2).

Với m= -3  ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn

Vậy m= 1 là giá trị cần tìm.

Chọn B.

2 tháng 9 2018

Đáp án C

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(x^2+2mx+2m=2x+3\)

\(\Leftrightarrow x^2-2x-3+2m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+2m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2m+3\end{matrix}\right.\)

Do \(-1< 2\) nên bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}-2m+3\ne-1\\-2m+3< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m\ne2\end{matrix}\right.\)