Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
Vì đường thẳng d lần lượt cắt Ox, Oy tại A, B nên A\(\left(\dfrac{-4}{m^2-2m+2};0\right)\); B\(\left(0;4\right)\)
Suy ra OA = \(\dfrac{4}{m^2-2m+2}\); OB = 4
ĐỂ diện tích tam giác AOB lớn nhất thì :
\(\dfrac{1}{2}.OA.OB=\dfrac{1}{2}.\dfrac{4}{m^2-2m+2}.4=\dfrac{8}{m^2-2m+2}\)lớn nhất
Hay \(m^2-2m+2\) nhỏ nhất.
Lại có:
\(m^2-2m+2\) = \(\left(m-1\right)^2+1\ge1\forall m\)
Nên GTNN của \(m^2-2m+2\) là 1
suy ra GTLN Saob là 8 khi và chỉ khi m = 1.
Vậy khi m = 1 thì diên tích tam giác AOB đạt giá trị lớn nhất là 8.
Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)
Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)
Giao điểm với trục tung: \(y=m.0+2=2\)
a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)
\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)
\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)
b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)
\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)
a: Thay x=3 và y=8 vào (d), ta được:
3(m-1)+2m-1=8
=>5m-4=8
=>5m=12
=>m=12/5
b: Tọa độ A là:
y=0 và x=(-2m+1)/(m-1)
=>OA=|2m-1/m-1|
Tọa độ B là:\
x=0 và y=2m-1
=>OB=|2m-1|
Để ΔOAB vuông cân tại O thì OA=OB
=>|2m-1|(1/|m-1|-1)=0
=>m=1/2 hoặc m=2 hoặc m=0
Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{m+1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\dfrac{3}{\left|m+1\right|}\)
Tọa độ B là:
x=0 và y=(m+1)*0+3=3
=>OB=3
SOAB=9
=>1/2*OA*OB=9
=>1/2*9/|m+1|=9
=>1/2*1/|m+1|=1
=>1/|m+1|=2
=>|m+1|=1/2
=>m+1=1/2 hoặc m+1=-1/2
=>m=-1/2 hoặc m=-3/2
d ∩ O y = B x B = 0 ⇒ y B = 4 ⇔ B 0 ; 4 ⇒ O B = 4 = 4 d ∩ O x = A y A = 0 ⇔ m 2 – 2 m + 2 x A + 4 = 0 x A = x A = − 4 m 2 − 2 m + 2 ⇒ A − 4 m 2 − 2 m + 2 ; 0 ⇒ O A − 4 m 2 − 2 m + 2
\ S Δ A O B = 1 2 O A . O B = 1 2 .4. − 4 m 2 − 2 m + 2 = 8 m − 1 2 + 1
Ta có m – 1 2 + 1 ≥ 1 ∀ m
Do đó S Δ A O B = 8 m − 1 2 + 1 ≤ 8 1 = 8
Dấu “=” xảy ra khi m – 1 = 0 ⇔ m = 1
Hay tam giác OAB có diện tích lớn nhất là 8 khi m = 1
Đáp án cần chọn là: A
Lời giải:
$A\in Ox\Rightarrow y_A=0$
$0=y_A=4m^2x_A+1-2m\Rightarrow x_A=\frac{2m-1}{4m^2}$
Vậy $A(\frac{2m-1}{4m^2},0)$
$B\in Oy\Rightarrow x_B=0$
$y_B=4m^2x_B+1-2m=4m^2.0+1-2m=1-2m$
Vậy $B(0, 1-2m)$
$S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}$
$\Leftrightarrow OA.OB=1$
$\Leftrightarrow |x_A|.|y_B|=1$
$\Leftrightarrow |\frac{2m-1}{4m^2}|.|1-2m|=1$
$\Leftrightarrow \frac{(2m-1)^2}{4m^2}=1$
$\Rightarrow \frac{2m-1}{2m}=1$ hoặc $\frac{2m-1}{2m}=-1$
$\Rightarrow 2m-1=2m$ (loại) và $2m-1=-2m$ (chọn)
$\Rightarrow m=\frac{1}{4}$