K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
3 tháng 12 2021

để hàm số đã cho là hàm số bậc nhất thì hệ số của x là 

\(m-1\ne0\Leftrightarrow m\ne1\)

2: m^2-m+1

=m^2-m+1/4+3/4

=(m-1/2)^2+3/4>=3/4>0 với mọi m

=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R

5 tháng 8 2023

a) Để hàm số là hàm bậc nhất thì 3 - m 0

m 3

b) Để hàm số là nghịch biến thì 3 - m < 0

m > 3

c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:

(3 - m).2 + 2 = -3

6 - 2m + 2 = -3

8 - 2m = -3

2m = 11

m = 11/2 (nhận)

Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)

(Sửa theo yêu cầu rồi nhé em!)

d) Thay tọa độ B(-1; -5) vào hàm số, ta được:

(2 - m).(-1) + 2 = -5

-2 + m + 2 = -5

m = -5 (nhận)

Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)

5 tháng 8 2023

Chị ơi câu c điểm A( 2; -3) chị ạ

30 tháng 10 2021

) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R

Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0

Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0

⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0

Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0

b)

Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0

Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0

Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R

Giải thích các bước giải:

30 tháng 10 2021

câu c đâu rui bạn oi

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$

$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$

b.

Để hàm nghịch biến thì $1-m^2<0$

$\Leftrightarrow (1-m)(1+m)<0$

$\Leftrightarrow m> 1$ hoặc $m< -1$

Để hàm đồng biến thì $1-m^2>0$

$\Leftrightarrow (1-m)(1+m)>0$

$\Leftrightarrow -1< m< 1$