Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
a) Để hàm số là hàm bậc nhất thì 3 - m 0
m 3
b) Để hàm số là nghịch biến thì 3 - m < 0
m > 3
c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:
(3 - m).2 + 2 = -3
6 - 2m + 2 = -3
8 - 2m = -3
2m = 11
m = 11/2 (nhận)
Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)
(Sửa theo yêu cầu rồi nhé em!)
d) Thay tọa độ B(-1; -5) vào hàm số, ta được:
(2 - m).(-1) + 2 = -5
-2 + m + 2 = -5
m = -5 (nhận)
Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
Lời giải:
Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$
$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$
b.
Để hàm nghịch biến thì $1-m^2<0$
$\Leftrightarrow (1-m)(1+m)<0$
$\Leftrightarrow m> 1$ hoặc $m< -1$
Để hàm đồng biến thì $1-m^2>0$
$\Leftrightarrow (1-m)(1+m)>0$
$\Leftrightarrow -1< m< 1$
để hàm số đã cho là hàm số bậc nhất thì hệ số của x là
\(m-1\ne0\Leftrightarrow m\ne1\)