Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện của m để hàm số luôn nghịch biến:
<=> m<1
b) Hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1
<=> m-1=-2
<=> m=-1
Vậy m =-1 thi hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1
c) Thay m=-1 vào đồ thị hàm số y=(m-1)x+m+3
Ta được:y=(-1-2)x-1+3=-2x+2
Đồ thị hàm số y=-2x+2 là đường thẳng đi qua hai điểm (0;2)và (1;0)
a: Để hàm số nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=-3 và y=0 vào (d), ta được:
-3(m-2)+m+3=0
=>-3m+6+m+3=0
=>-2m+9=0
=>-2m=-9
=>\(m=\dfrac{9}{2}\)
c: Tọa độ giao điểm của y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=-x+2\end{matrix}\right.\)
=>x=1 và y=-1+2=1
Thay x=1 và y=1 vào (d), ta được:
m+2+m+3=1
=>2m+5=1
=>2m=-4
=>m=-4/2=-2
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
a: Để hàm số nghịch biên thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào (d), ta đc:
3(m-2)+m+3=0
=>3m-6+m+3=0
=>4m-3=0
=>m=3/4
c: Tọa độ giao điểm là
2x-1=-x+2 và y=-x+2
=>x=1 và y=1
Thay x=1 và y=1 vào (d), ta được:
m-2+m+3=1
=>2m+1=1
=>m=0
1. hàm số nghịch biến khi
\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\)
2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)
\(\Rightarrow y=0\)
Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)
3. pt hoành độ giao điểm của
\(y=-x+2,và,y=2x-1\) là
\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)
A(1,1)
3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a: Để hàm số y=(m-1)x+3 đồng biến trên R thì m-1>0
=>m>1
Để hàm số y=(m-1)x+3 nghịch biến trên R thì m-1<0
=>m<1
b: Thay m=3 vào (d), ta được:
\(y=\left(3-1\right)x+3=2x+3\)
Vẽ đồ thị:
c: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-1=2\\3\ne-1\left(đúng\right)\end{matrix}\right.\)
=>m-1=2
=>m=3
d: Thay x=-2 và y=0 vào (d1), ta được:
\(-2\left(m-1\right)+3=0\)
=>-2(m-1)=-3
=>\(m-1=\dfrac{3}{2}\)
=>\(m=\dfrac{3}{2}+1=\dfrac{5}{2}\)
a. \(\left\{{}\begin{matrix}DB:m+4>0\Leftrightarrow m>-4\\NB:m+4< 0\Leftrightarrow m< -4\end{matrix}\right.\)
\(a,\) Đồng biến \(\Leftrightarrow m+4>0\Leftrightarrow m>-4\)
Nghịch biến \(m+4< 0\Leftrightarrow m< -4\)
\(b,A\left(-1;2\right)\in\left(d\right)\Leftrightarrow-m-4-m+6=2\Leftrightarrow m=0\)
\(\Leftrightarrow y=4x+6\)
ai trả lời giùm vs ạ cần gấp lắm