Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK

a) Vì đths \(y=\)\(\frac{a}{x}\) đi qua \(M\left(2;3\right)\)
Thay \(x=2;y=3\)
\(\Leftrightarrow\)\(\frac{a}{2}=3\)
\(\Leftrightarrow a=6\)
Vậy hệ số \(a=6\)
b) * Xét điểm \(N\left(-1;6\right)\)
\(\Rightarrow\)Thay \(x=-1;y=6\)vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow6\ne\frac{6}{-1}\Rightarrow N\notinđths\)
* Xét điểm \(P\left(\frac{1}{3};18\right)\)
\(\Rightarrow\)Thay \(x=\frac{1}{3};y=18\) vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow18=\frac{6}{\frac{1}{3}}\Rightarrow P\inđths\)

- Thay \(x=a+2,y=3a^2+2a\) vào hàm số f(X) ta được :
\(3a^2+2a=a\left(a+2\right)+\frac{8}{9}\)
=> \(3a^2+2a=a^2+2a+\frac{8}{9}\)
=> \(3a^2+2a-a^2-2a-\frac{8}{9}=0\)
=> \(2a^2-\frac{8}{9}=0\)
=> \(a^2=\frac{4}{9}\)
=> \(\orbr{\begin{cases}a=-\frac{2}{3}\\a=\frac{2}{3}\end{cases}}\)
Vậy a có các giá trị là \(a=-\frac{2}{3},a=\frac{2}{3}\)

\(\frac{4}{5}x+0=4,5\)
\(\frac{4}{5}x=4,5\)
\(x=4,5:\frac{4}{5}\)
\(x=5,625\)
vậy \(x=5,625\)
\(\frac{x}{3}=\frac{-5}{9}\)
\(\Rightarrow9x=-5.3\)
\(\Rightarrow9x=-15\)
\(\Rightarrow x=\frac{-5}{3}\)
vậy \(x=\frac{-5}{3}\)
\(\left|x+5\right|-\frac{1}{3}=\frac{2}{3}\)
\(\left|x+5\right|=\frac{2}{3}+\frac{1}{3}\)
\(\left|x+5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x+5=1\\x+5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
\(\left(x-2\right)^3=-125\)
\(\left(x-2\right)^3=\left(-5\right)^3\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=-3\)
vậy \(x=-3\)
Vì đồ thị hàm số đã đi qua điểm A(1;2) nên \(x=1;y=2\)
Thay vào ta có:
\(\left(m^2+m\right).1=2\)
\(\Leftrightarrow m^2+m=2\)
\(\Leftrightarrow m^2+m-2=0\)
\(\Leftrightarrow m^2-m+2m-2=0\)
\(\Leftrightarrow m.\left(m-1\right)+2.\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right).\left(m+2\right)=0\)
\(\Leftrightarrow m-1=0\)hoặc \(m+2=0\)
\(\Leftrightarrow m=1\)hoặc \(m=-2\)
Đối chiếu với điều kiện \(\Rightarrow m\in\left\{-2;1\right\}\)