Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)
Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)
Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)
Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)
Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)
Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)
Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)
Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2