Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
Vì đường thẳng d lần lượt cắt Ox, Oy tại A, B nên A\(\left(\dfrac{-4}{m^2-2m+2};0\right)\); B\(\left(0;4\right)\)
Suy ra OA = \(\dfrac{4}{m^2-2m+2}\); OB = 4
ĐỂ diện tích tam giác AOB lớn nhất thì :
\(\dfrac{1}{2}.OA.OB=\dfrac{1}{2}.\dfrac{4}{m^2-2m+2}.4=\dfrac{8}{m^2-2m+2}\)lớn nhất
Hay \(m^2-2m+2\) nhỏ nhất.
Lại có:
\(m^2-2m+2\) = \(\left(m-1\right)^2+1\ge1\forall m\)
Nên GTNN của \(m^2-2m+2\) là 1
suy ra GTLN Saob là 8 khi và chỉ khi m = 1.
Vậy khi m = 1 thì diên tích tam giác AOB đạt giá trị lớn nhất là 8.
Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{m+1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\dfrac{3}{\left|m+1\right|}\)
Tọa độ B là:
x=0 và y=(m+1)*0+3=3
=>OB=3
SOAB=9
=>1/2*OA*OB=9
=>1/2*9/|m+1|=9
=>1/2*1/|m+1|=1
=>1/|m+1|=2
=>|m+1|=1/2
=>m+1=1/2 hoặc m+1=-1/2
=>m=-1/2 hoặc m=-3/2
Xét pt tọa độ giao điểm:
X²=(m+4)x-2m-5
<=> -x²+(m+4)x-2m-5
a=-1. b= m+4. c=2m-5
Để pt có 2 No pb =>∆>0
=> (m+4)²-4×(-1)×2m-5>0
=> m² +2×m×4+16 +8m-20>0
=> m²+9m -2>0
=> x<-9 và x>0
Ta có A(0;2) suy ra OA=2
OB(\(\frac{2}{1-\sqrt{m-1}}\);0) suy ra OB=\(\frac{2}{1-\sqrt{m-1}}\)( (_) là trị tuyệt đối)
Ta có OA.OB=8
\(\frac{4}{\left(1-\sqrt{m-1}\right)}\)=8
(1-\(\sqrt{m-1}\) )=1/2
Phá dấu trị tuyệt đối là ra được m=5/4 hoặc m=13/4
Cách khác câu 4 (dùng AM-GM và pp chọn điểm rơi)
Lấy $k>0$. Áp dụng BĐT AM-GM cho các số dương thì:
$kx+\frac{4}{x}\geq 4\sqrt{k}$
$k(1-x)+\frac{9}{1-x}\geq 6\sqrt{k}$
Cộng theo vế:
$k+y\geq 10\sqrt{k}\Leftrightarrow y_{\min}=10\sqrt{k}-k$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} kx=\frac{4}{x}\\ k(1-x)=\frac{9}{1-x}\end{matrix}\right.\Rightarrow \frac{4}{x^2}=\frac{9}{(1-x)^2}\)
Kết hợp $1> x>0$ ta giải PT ra được $x=\frac{2}{5}$ nên $a+b=2+5=7$
Câu 4:
$0< x< 1\Rightarrow x>0; 1-x>0$
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{4}{x}+\frac{9}{1-x}\right)(x+1-x)\geq (2+3)^2\)
\(\Leftrightarrow y\geq 25\). Vậy $y_{\min}=25$. Dấu "=" xác định tại \(\frac{2}{x}=\frac{3}{1-x}\Leftrightarrow x=\frac{2}{5}\)
$\Rightarrow a=2; b=5\Rightarrow a+b=7$
Để d cắt trục Ox và Oy \(\Leftrightarrow m\ne1\)
Tọa độ A: \(y=0\Rightarrow\left(m-1\right)^2x+4=0\Rightarrow x=\frac{-4}{\left(m-1\right)^2}\Rightarrow A\left(\frac{-4}{\left(m-1\right)^2};0\right)\)
Tọa độ B: \(x=0\Rightarrow y=4\Rightarrow B\left(0;4\right)\)
\(\Rightarrow OB=4\) ; \(OA=\left|\frac{-4}{\left(m-1\right)^2}\right|=\frac{4}{\left(m-1\right)^2}\)
\(\Rightarrow S_{OAB}=\frac{1}{2}.OA.OB=\frac{8}{\left(m-1\right)^2}\)
Đề bài sai, ko tồn tại GTLN hay GTNN của biểu thức này