Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì đường thẳng cắt Ox;Oy => k -3 khác 0 => k khác 3
+ x =0 => y =k+2 A(0;k+2)
+ y =0 => x =\(\frac{k+2}{3-k}\) B(\(\frac{k+2}{3-k}\);0)
Diện tích AOB = 1/2 . OA.OB = 1/2 ./\(\frac{k+2}{3-k}.\left(k+2\right)\)/ = 2
\(\left(k+2\right)^2=4\)/3 -k/
+ với k > 3 => k2 +4k +4 =4 k -12 => k2 = -16 loại
+ k<3 => k2 +4k +4 = 12 - 4k => k2 +8k+16 =24=>(k+4)2 =24 => k =-4 +\(2\sqrt{6}\) loại ; k =-4 -\(2\sqrt{6}\)( TM)
Vậy k =-4 -\(2\sqrt{6}\)
Sửa đề: (d); y=(k-1)x+2k
a: Để (d)//Ox thì k-1=0
=>k=2
b: Thya x=-3 và y=5 vào (d),ta được:
-3(k-1)+2k=5
=>-3k+3+2k=5
=>3-k=5
=>k=-2
c: Tọa độ A là:
y=0 và (k-1)x+2k=0
=>x=-2k/k-1 và y=0
=>OA=2|k/k-1|
Tọa độ B là:
x=0 và y=(k-1)*0+2k=2k
=>OB=|2k|
Theo đề, ta có: \(\dfrac{1}{2}\cdot OA\cdot OB=1\)
=>\(\dfrac{2\left|k\right|\cdot\left|k\right|}{\left|k-1\right|}=1\)
=>2k^2=|k-1|
TH1: k>1
=>2k^2=k-1
=>2k^2-k+1=0
=>Loại
TH2: k<1
=>2k^2=-k+1
=>2k^2+k-1=0
=>2k^2+2k-k-1=0
=>(k+1)(2k-1)=0
=>k=1/2(nhận) hoặc k=-1(nhận)
d ∩ O y = B ⇒ x B = 0 ⇒ y B = − 1 ⇒ B 0 ; − 1 ⇒ O B = − 1 = 1 d ∩ O x = A ⇒ y A = 0 ⇔ k – 2 x A − 1 = 0 ⇔ x A = 1 k − 2 k ≠ 2
⇒ A 1 k − 2 ; 0 ⇒ O A = 1 k − 2
S Δ A O B = 1 2 O A . O B = 1 ⇔ 1 2 .1. 1 k − 2 = 1 ⇔ | k − 2 | = 1 2 ⇔ k = 5 2 k = 3 2 (tmdk)
Đáp án cần chọn là: D
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3