Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = (m+1)x -2m là hàm bậc nhất khi m+1 ≠ 0 ⇔ m ≠ - 1
a) Hàm số nghịch biến trên R khi a < 0 ⇔ m + 1< 0 ⇔ m < - 1
kết hợp với điều kiện. Vậy m < -1
b) Khi m = 1 ta được: y = (1+1)x - 2.1 hay y = 2x - 2
Đồ thị hàm số y = 2x - 2 đi qua hai điểm A(0;-2) và B(1;0)
c) Đồ thị của hai hàm số song song với nhau khi \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1=3\\-2m\ne6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne-3\end{matrix}\right.\)
kết hợp với điều kiện. Vậy m = 2
Tham Khảo:
Hàm số y = (m+1)x -2m là hàm bậc nhất khi m+1 ≠ 0 ⇔ m ≠ - 1
a) Hàm số nghịch biến trên R khi a < 0 ⇔ m + 1< 0 ⇔ m < - 1
kết hợp với điều kiện. Vậy m < -1
b) Khi m = 1 ta được: y = (1+1)x - 2.1 hay y = 2x - 2
Đồ thị hàm số y = 2x - 2 đi qua hai điểm A(0;-2) và B(1;0)
c) Đồ thị của hai hàm số song song với nhau khi
kết hợp với điều kiện. Vậy m = 2
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
a: Vì (d) song song với y=2x-3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=1 vào (d), ta được:
b+2=1
hay b=-1
b: Vì (d) song song với y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=-3 và y=0 vào (d), ta được:
b-6=0
hay b=6
\(a,\Leftrightarrow\left\{{}\begin{matrix}m-1=1\\3-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow m=2\\ \Leftrightarrow y=x-1\\ b,\text{PT giao Ox và Oy: }y=0\Leftrightarrow x=\dfrac{2m-3}{m-1}\Leftrightarrow OA=\left|\dfrac{2m-3}{m-1}\right|\\ x=0\Leftrightarrow y=3-2m\Leftrightarrow OB=\left|2m-3\right|\\ \text{Gọi H là chân đường cao từ O \rightarrow}\left(d\right)\Leftrightarrow\Leftrightarrow OH=1\\ \text{Áp dụng HTL: }\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{OH^2}=1\\ \Leftrightarrow\dfrac{\left(m-1\right)^2}{\left(2m-3\right)^2}+\dfrac{1}{\left(2m-3\right)^2}=1\\ \Leftrightarrow m^2-2m+2=4m^2-12m+9\\ \Leftrightarrow3m^2-10m+7=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{7}{3}\\m=1\end{matrix}\right.\)
2:
a: Thay x=0 và y=-3 vào (d), ta được:
3*0+b=-3
=>b=-3
b: Thay x=-4 và y=0 vào (d), ta được:
3*(-4)+b=0
=>b=12
c: Thay x=-1 và y=2 vào (d), ta được:
3*(-1)+b=2
=>b-3=2
=>b=5
a, gọi điểm hàm số (1) luôn đi qua là A(xo,yo) thì xo,yo thỏa mãn (1)
\(=>yo=\left(a-1\right)xo+a< ->a.\left(xo+1\right)-\left(xo+yo\right)=0\)
\(=>\left\{{}\begin{matrix}xo+1=0\\xo+yo=0\end{matrix}\right.\)=>xo=-1,yo=1 vậy.....
b,\(=>x=0,y=3=>\left(1\right):a=3\)(tm)
c,\(=>x=-2,y=0=>\left(1\right):0=\left(a-1\right)\left(-2\right)+a=>a=2\left(tm\right)\)
\(=>y=x+2\) cho x=0=>y=2=>A(0;2)
cho y=0=>x=-2=>B(-2;0)
gọi OH là khoảng cách từ gốc tọa độ đến đồ thị hàm số(1)
\(=>\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=>\dfrac{1}{OH^2}=\dfrac{1}{2^2}+\dfrac{1}{\left(-2\right)^2}=>OH=....\)