Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Tại x=2 \(\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2=4\left(1\right)\)
Tại x=\(\frac{1}{2}\)\(\Rightarrow f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\)
\(\Rightarrow9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\left(2\right)\)
Từ (1)(2) \(\Rightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\end{cases}\Rightarrow8f\left(2\right)=\frac{3}{4}-4=\frac{-13}{4}}\)
\(\Rightarrow f\left(2\right)=\frac{-13}{32}\)
a)Với x1 = x2 = 1
\( \implies\) \(f\left(1\right)=f\left(1.1\right)\)
\( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)
\( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)
\( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)
\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)
Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )
\( \implies\) \(f\left(1\right)\) khác \(0\)
\( \implies\) \(f\left(1\right)-1=0\)
\( \implies\) \(f\left(1\right)=1\)
b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)
\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)
TL: F(1/x)=\(\frac{\frac{1}{x^4}+1}{\frac{1}{x^2}}\)=\(\frac{\frac{1+x^4}{x^4}}{\frac{1}{x^2}}\)=\(\frac{x^4+1}{x^2}\)=f(x) Với mọi x khác 0 (ĐPCM)