\(\dfrac{1}{2}\)x+5

tính f(0); f(1); f(2); f(3); f(-2); f(-10)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Giải:

\(y=f\left(x\right)=\dfrac{1}{2}x+5\)

\(\Leftrightarrow f\left(0\right)=\dfrac{1}{2}.0+5=0+5=5\)

\(\Leftrightarrow f\left(1\right)=\dfrac{1}{2}.1+5=\dfrac{1}{2}+5=\dfrac{11}{2}\)

\(\Leftrightarrow f\left(2\right)=\dfrac{1}{2}.2+5=1+5=6\)

\(\Leftrightarrow f\left(3\right)=\dfrac{1}{2}.3+5=\dfrac{3}{2}+5=\dfrac{13}{2}\)

\(\Leftrightarrow f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)+5=-1+5=4\)

\(\Leftrightarrow f\left(-10\right)=\dfrac{1}{2}.\left(-10\right)+5=-5+5=0\)

Vậy ...

Chúc bạn học tốt!

25 tháng 7 2018

\(y=f\left(x\right)=\dfrac{1}{2}x+5\)

Ta có : \(f\left(0\right)=\dfrac{1}{2}.0+5=5\)

\(f\left(1\right)=\dfrac{1}{2}.1+5=\dfrac{11}{2}=5,5\)

\(f\left(2\right)=\dfrac{1}{2}.2+5=6\)

\(f\left(3\right)=\dfrac{1}{2}.3+5=\dfrac{13}{2}=6,5\)

\(f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)+5=4\)

\(f\left(-10\right)=\dfrac{1}{2}.\left(-10\right)+5=0\)

#HỌC TỐT ~~~

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Các hàm số y = f(x) = 2/3 x và y = g(x) = 2/3 x + 3 là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

25 tháng 7 2018

a) Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x\)

Ta có : \(f\left(-2\right)=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)

\(f\left(-1\right)=\dfrac{2}{3}.\left(-1\right)=-\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{2}{3}.0=0\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

\(f\left(1\right)=\dfrac{2}{3}.1=\dfrac{2}{3}\)

\(f\left(2\right)=\dfrac{2}{3}.2=\dfrac{4}{3}\)

\(f\left(3\right)=\dfrac{2}{3}.3=2\)

b) Cho hàm số : \(y=g\left(x\right)=\dfrac{2}{3}x+3\)

\(g\left(-2\right)=\dfrac{2}{3}.\left(-2\right)+3=\dfrac{5}{3}\)

\(g\left(-1\right)=\dfrac{2}{3}.\left(-1\right)+3=\dfrac{7}{3}\)

\(g\left(0\right)=\dfrac{2}{3}.0+3=3\)

\(g\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}+3=\dfrac{10}{3}\)

\(g\left(1\right)=\dfrac{2}{3}.1+3=\dfrac{11}{3}\)

\(g\left(2\right)=\dfrac{2}{3}.2+3=\dfrac{13}{3}\)

\(g\left(3\right)=\dfrac{2}{3}.3+3=5\)

c) Khi \(x\)lấy cùng một giá trị thì giá trị của \(g\left(x\right)\) lớn hơn giá trị của \(f\left(x\right)\)\(3\) đơn vị.

a: f(1)=-1,5

f(2)=-6

f(3)=-13,5

=>f(1)>f(2)>f(3)

b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)

f(-2)=-1,5x4=-6

f(-1)=-1,5x1=-1,5

=>f(-3)<f(-2)<f(-1)

c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị

4 tháng 4 2015

Ta có f(x) = 2015/[x(x + 2)]

=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)

     f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)

     f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)

.........................................

=> S = f(1)+f(2)+f(3)+...+f(2015)

        = (2015/2)(1 + 1/2 - 1/2016 - 1/2017)