Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: y = f(x) = kx => f(x1) = kx1 và f(x2) = kx2
Từ đó ta có: f(x1 - x2) = k(x1 - x2) (1)
f(x1) - f(x2) = kx1 - kx2 = k ( x1 - x2) (2)
Từ (1) và (2) => f(x1 - x2) = f(x1) - f(x2)
a) Với x1 = x2 = 1
\(\Rightarrow f\left(1\right)=f\left(1.1\right)\)
\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\)
\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\)
\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)
Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )
\(\Rightarrow f\left(1\right)\ne0\)
\(\Rightarrow f\left(1\right)-1=0\)
\(\Rightarrow f\left(1\right)=1\)
b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)
\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)
\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)
\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)
\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)
a)Với x1 = x2 = 1
\( \implies\) \(f\left(1\right)=f\left(1.1\right)\)
\( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)
\( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)
\( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)
\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)
Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )
\( \implies\) \(f\left(1\right)\) khác \(0\)
\( \implies\) \(f\left(1\right)-1=0\)
\( \implies\) \(f\left(1\right)=1\)
b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)
\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)
ta có: f(x)=kx
=>f(51x1-2014x2)=k.(51x1-2014x2)=k51x1-2014kx2=51f(x1)-2014f(x2)