K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

a: f(-2)=-6+1=-5

f(1/2)=3/2+1=5/2

11 tháng 12 2015

a, thay x=-2;x=6;x=-4 vào ta được:

f(-2)=-2*2=-4

f(6)=2*6=12

f(-4)=-4*2=-8

b,khi y=6 thì x=6/2=3

khi y=8 thì x=8/2=4

c,khi x=2 thì y=2*2=4

khĩ=5 thì y=2*5=10

8 tháng 12 2016

Khi f(2)

=> y = \(2^2-2=2\)

Khi f(1)

=> \(y=1^2-2=-1\)

Khi f(0)

=> \(y=0^2-2=-2\)

Khi f(-1)

=> \(y=\left(-1\right)^2-2=-1\)

Khi f(7)

=> \(y=7^2-2=47\)

8 tháng 12 2016

y = f(2) = 22 - 2 = 2

y = f(1) = 12 - 2 = -1

y = f(0) = 02 - 2 = -2

y = f(-1) = (-1)2 - 2 = -1

y = f(7) = 72 - 2 = 47

10 tháng 11 2019

\(f\left(x\right)=x^2-5x+6\)

a) +) \(f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^2-5.\left(-\frac{1}{3}\right)+6=\frac{70}{9}\)

+) \(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+6=\frac{15}{4}\)

+) \(f\left(0\right)=0^2-5.0+6=6\)

+) \(f\left(1\right)=1^2-5.1+6=2\)

b) \(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

ok

2 tháng 11 2019

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)

a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) Với \(x=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)

+) Với \(x=-\frac{1}{2}\)

\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)

2 tháng 11 2019

c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)

\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)

(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)

TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)

TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))

Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)