Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất phương trình m > f(x) - ln(-x) đúng với mọi x ∈ - 1 ; - 1 e
Ta có
Suy ra hàm số g(x) đồng biến trên
Chọn D.
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Đáp án B
Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.
Cách giải: Ta có
BBT:
Từ BBT ta thấy (I) đúng, (II) sai.
Với => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).
=>(III) đúng.
Vậy có hai khẳng định đúng
Có
Đặt t=f(x)+m bất phương trình trở thành:
Vậy
Chọn đáp án B.
Đặt phương trình trở thành f(t)=f(m)(1)
Với mỗi t ∈ - 1 ; 3 cho ta duy nhất một nghiệm x ∈ - π 2 ; π 2
Vậy ta cần tìm m để (1) có đúng ba nghiệm
Chọn đáp án B.