K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

24 tháng 5 2017

Ta có:

f(x+3) = a(x+3)2+ b(x+3) +c=ax2+ (6a+b) x+ 9a+ 3b+c

f(x+2) = a(x+2)2+ b(x+2) +c=ax2+ (4a+b) x+ 4a+ 2b+c

f (x+1) = a(x+1)2+ b(x+1) +c=ax2+ (2a+b) x+ 2a+ 2b+c

Suy ra: (x+ 3) -3f( x+ 2) +3f( x+ 1)= ax2+ bx+ c

Chọn D.

29 tháng 9 2018

Đáp án C

1 tháng 1 2021

\(h\left(x\right)=x^2-4x+5+m\)

\(g\left(x\right)=\left|h\left(x\right)\right|=\left|f\left(x\right)+m\right|=\left|x^2-4x+5+m\right|\)

\(h\left(0\right)=5+m;h\left(4\right)=5+m;h\left(2\right)=1+m\)

TH1: \(1+m>0\Leftrightarrow m>-1\)

\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)

TH2: \(5+m< 0\Leftrightarrow m< -5\)

\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)

TH3: \(5+m>0>1+m\Leftrightarrow-5< m< -1\)

Nếu \(5+m< -1-m\Leftrightarrow m< -3\)

\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)

Nếu \(5+m=-1-m\Leftrightarrow m=-3\)

\(max=5+m=2\ne9\)

\(\Rightarrow m=-3\) không thỏa mãn yêu cầu bài toán

Nếu \(5+m>-1-m\Leftrightarrow m>-3\)

\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)

Vậy \(m=4;m=-10\)

24 tháng 4 2017

Ta có: 

Chọn D.