Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có - 1 30 = ∫ 1 2 x - 1 f ( x ) d x = 1 2 ∫ 1 2 f ( x ) d x - 1 2
= 1 2 x - 1 2 f ( x ) 1 2 - 1 2 ∫ 1 2 x - 1 2 f ' x d x
⇔ ∫ 1 2 x - 1 2 f ' ( x ) d x = 1 15
Ta lại có ∫ 1 2 x - 1 4 d x = 1 5 x - 1 5 1 2 = 1 5
Từ giả thiết và các kết quả ta có
9 ∫ 1 2 f ' ( x ) 2 d x - 6 ∫ 1 2 x - 1 2 f ' ( x ) d x + ∫ 1 2 x - 1 4 d x = 0
Mặt khác:
9 ∫ 1 2 f ' ( x ) 2 d x - 6 ∫ 1 2 x - 1 2 f ' ( x ) d x + ∫ 1 2 x - 1 4 d x = ∫ 1 2 3 f ' ( x ) - x - 1 2 2
Do vậy xét trên đoạn [1;2] , ta có
3 f ' ( x ) - ( x - 1 ) 2 = 0 ⇔ f ' ( x ) = 1 3 x - 1 2 ⇒ f ( x ) = 1 9 x - 1 3 + c
Lại do f(2) = 0 nên C + 1 9 = 0 ⇔ C = - 1 9 ⇒ f ( x ) = 1 9 x - 1 3 - 1 9
Suy ra I = 1 9 ∫ 1 2 x - 1 3 - 1 d x = 1 36 x - 1 4 1 2 - 1 9 x - 1 1 2 = - 1 12
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Đáp án A