\(y=\frac{x^2-2x+4}{x-2}\left(C\right)\). Tìm m để đường thẳng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Xét phương trình hoành độ giao đ\(\Leftrightarrow m< 1\)iểm (C) với \(d_m:\frac{x^2-2x+4}{x-2}=mx+2-2m\)

                                       \(\Leftrightarrow x^2-2x+4=\left(x-2\right)\left(mx+2-2m\right)\)

                              \(\left(x\ne2\right)\Leftrightarrow\left(m-1\right)x^2-4\left(m-1\right)x+4\left(m+2\right)=0\)(\(x\ne2\)) (*)

\(d_m\) có 2 giao điểm với (C) khi và chỉ khi (*) có 2 điểm phân biệt, tức là : 

\(\begin{cases}m-1\ne0\\\Delta'=-12\left(m-1\right)>0\end{cases}\)

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

27 tháng 4 2016

Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow m^2+20m+25=0\)

                         \(\Leftrightarrow m=-10\pm5\sqrt{3}\)

 
 
Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được: a) \(I=2ln\left(x\right)\) b) \(I=ln\left(xe\right)^{ln\left(x\right)}\) c) \(I=ln\left(x^{lnx}e\right)\) d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\) Câu 2: Hàm số nào sau đây không có cự trị: a) \(y=\frac{2+x^2}{x^2-4}\) b) \(y=x^8+x^6+2x^4-4x^2-x+1\) c) \(y=sin\left(cos\left(x\right)\right)\) d) \(y=x^3+2x^2+\sqrt{x}\) Câu 3: Cho đồ thị \(\left(C\right):\)...
Đọc tiếp

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:

a) \(I=2ln\left(x\right)\)

b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)

c) \(I=ln\left(x^{lnx}e\right)\)

d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)

Câu 2: Hàm số nào sau đây không có cự trị:

a) \(y=\frac{2+x^2}{x^2-4}\)

b) \(y=x^8+x^6+2x^4-4x^2-x+1\)

c) \(y=sin\left(cos\left(x\right)\right)\)

d) \(y=x^3+2x^2+\sqrt{x}\)

Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)

b)\(\left[-2;4\right]\)

c) \(\left(4;+\infty\right)\)

d) Không tồn tại giá trị m

Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\)\(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:

a) \(a-b+c+d=0\)

b) \(c=\frac{1}{d}\)

c) \(\left(a-b\right)\left(c+d\right)=0\)

d) \(a+b=35c^2+35d\)

Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0

b) 1

c) 2

d) Đáp án khác

2
NV
5 tháng 2 2020

Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)

Chắc là cái đầu, vậy ta biến đổi được:

\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)

Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị

Câu 3:

Phương trình hoành độ giao điểm:

\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)

\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)

Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)

Do đó ko tồn tại m thỏa mãn

NV
5 tháng 2 2020

Câu 4:

\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)

\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)

\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)

Đáp án b sai

3 tháng 5 2016

Phương trình hoành độ giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) được viết thành :

    \(\left(x+1\right)\left(x^2-3mx+2m^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\left(x-2m\right)=0\)

\(\Rightarrow\) Giao điểm của  \(\left(\Delta_m\right)\) và \(\left(C_m\right)\)  gồm \(A\left(-1;-m-m^2\right);B\left(m;0\right)\) và \(C\left(2m;m^2\right)\), trong số đó, A là điểm duy nhất có hoành độ không đổi (khi m thay đổi)

Đặt \(f_m\left(x\right)=x^3-\left(3m-1\right)x^2+2m\left(m-1\right)x+m^2\)

Các tiếp tuyến của  \(\left(C_m\right)\)  tại B và C lần lượt là các đường thẳng :

\(\left(\Delta_B\right):y=f_m'\left(x_B\right)x+y_b-f_m'\left(x_B\right)x_B\)

\(\left(\Delta_C\right):y=f_m'\left(x_C\right)x+y_C-f_m'\left(x_C\right)x_C\)

Ta cần tìm m để B và C cùng khác A và \(\Delta_B\backslash\backslash\Delta_C\), tức là :

\(\begin{cases}x_B\ne x_A\\x_C\ne x_A\\f'_m\left(x_B\right)=f'_m\left(x_C\right)\\y_B-f'_m\left(x_B\right)x_B\ne y_C-f'_m\left(x_C\right)x_C\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-1\\m\ne-\frac{1}{2}\\-m^2=2m^2+2m\\m^3\ne-4m^3-3m^2\end{cases}\)

                                                        \(\Leftrightarrow m=-\frac{2}{3}\)

 

27 tháng 4 2016

Ta có : \(A\left(0;\frac{1}{3}\right)\) và \(y'=4x^2-2\left(2m+1\right)x+m+2\)

Suy ra \(y'\left(0\right)=m+2\)

Tiếp tuyến của d cắt Ox tại \(B\left(-\frac{1}{3m+6};0\right)\) (m=-2 không thỏa mãn yêu cầu bài toán)

Khi đó diện tích của tam giác tạo bởi d với 2 trục tọa độ là :

\(S=\frac{1}{2}OA.OB=\frac{1}{2}.\frac{1}{3}.\left|\frac{-1}{3m+6}\right|=\frac{1}{18\left|m+2\right|}\)

Theo giả thiết ta có : \(\frac{1}{18\left|m+2\right|}=\frac{1}{3}\Leftrightarrow\left|m+2\right|=\frac{1}{6}\)

                                                  \(\Leftrightarrow m=-\frac{13}{6}\) hoặc \(m=-\frac{11}{6}\)

27 tháng 4 2016

Tập xác định \(D=R\backslash\left\{2-m\right\}\)

Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)

a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :

\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)

* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)

* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)

Vậy m = 0 là giá trị cần tìm

 

b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)

\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)

Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :

\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)

Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

6 tháng 4 2016

\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)

Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m

Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)

Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)

\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)

Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n 2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ? 3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của...
Đọc tiếp

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n

2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ?

3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của k \(\in\) \(\left[-2019;2019\right]\) để trên đồ thị (C) có ít nhất một điểm mà tiếp tuyến tại đó vuông góc với đường thẳng (d): y=(k-3)x

4) Cho 2 số phức \(z_1\), \(z_2\) thỏa mãn \(\left|z_1\right|\)=4, \(\left|z_2\right|\)=6 và \(\left|z_1+z_2\right|=10\). Giá trị của \(\frac{\left|z_1-z_2\right|}{2}\)

5) Cho hàm số y= \(\frac{x^4}{4}-\frac{mx^3}{3}+\frac{x^2}{2}-mx+2019\) (m là tham số). Gọi S là tập hợp tất cả những giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (6;+∞). Tính số phần tử của S biết rằng \(\left|m\right|\le2020\)

0